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ABSTRACT

One of the primary goals of this research was to analyze the role
of signal processing in acoustic systems for estimating the abundance
of marine organisms. 1In such an analysis, the first step is to design
a reasonable model for the scattering enviromment. The model used here
assumes that the organisms are distributed according to a spatial Poisson
distribution. With this model, it is shown that the scattered signal
received is a filtered Poisson process with intensity AoB(t), where 8(t)
is a known deterministic function of time and A, is the unknown spatial
density of the scatterers, The problem of estimating the intensity factor
of a filtered Poisson process may arise from a variety of physical models.
For this reason, the general problem is considered first. Estimates ob-
tained using independent samples from the filtered Poisson process are
treated in detail. A lower bound on the variance of the independent
sample estimate is derived and the structure of a recursive estimator for
Ao is obtained.

The filtered Poisson process model for the acoustic scattered signal
or reverberation is then developed in detail. An expression for the
first-order density function for the reverberation process is obtained
and its convergence to the Gaussian density is investigated.

The general theory developed is used to evaluate the performance
of acoustic techniques for estimating the abundance of marine organisms.
The performance of estimators using independent samples from the reverb-
eration process is compared with the lower bound on the variance of the
estimate. A Monte Carlo simulation shows that a recursive estimation
technique satisfies the variance bound. Mean squared error expressions
are derived for the two commonly used abundance estimation techniques,
echo counting and echo integration,

A method for estimating the probability density function of the
single scatterer target strength is discussed. The mean value of the
target strength is required to scale the echo integrator output and
obtain an absolute abundance estimate.
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CHAPTER 1

INTRODUCTION

Electrical engineers have for some time used the methods of
statistical inference in the design and analysis of electronic systems.
Most stochastic system theory developed to date has been concerned with
processing of signals with Gaussian statistics. There are two reasons
for this: (1) the Gaussian process model applies to a large class of
physical phenomena; and (2) the Gaussian process has many mathematical
properties that are analytically desirable. However, there are several
physical phenomena that can not be suitably modeled by a Gaussian pro-
cess. One type of stochastic process that arises often in nature is the

! This dissertation is concerned with the prob-

filtered Poisson process.
lem of estimating the spatial scattering density from acoustic volume
reverberation. In this chapter, a brief account of previous research is

given. The chapter is concluded with a preview of the material discussed

in the following chapters.

1.1 Historical Account

A large-scale research effort to develop sonar systems began

during World War II. Since that time, the U.S. Navy has sponsored a

! gtochastic processes of this type are often referred to as shot noise
processes because of their initial application as a model for neise in vacuum
tubes [1]. The term filtered Poisson process is more descriptive of their main
characteristic, that is, a process arising from a linear operation on a Poisson

counting process.
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great deal of research in the signal processing of underwater acoustic
signals. One aspect of this research has been to characterize reverber-
ation and develop signal processing techniques that minimize its adverse
effects on sonar detection systems. Statistical models for reverberation
were developed in the United States by Faure (1964) [2] and Middleton
(1967 and 1972) [3]. Research on the statistical nature of reverberation
was also carried on by Ol'shevskii [4] in the Soviet Union. A number of
papers have dealt with the optimum processing of signals in a reverber-
ation-limited environment. Treatment of some of the main results of this
research can be found in the book by Van Trees [5] and the dissertation
by Moose [6]. Two characteristics of the reverberation-related signal
processing theory developed to date are that it assumes that the reverber-
ation process has Gaussian statistics and that reverberation is an

undesirable quantity whose effects are to be minimized.

During the period of rather extensive military-oriented acoustic
research, biologists were beginning to use acoustic systems to study the
distribution and relative abundance of fish populations. Until recently,
the systems used by the biologist consisted of an eche sounder and chart
recorder. Several articles were written that described techniques for
determining the abundance of fish stocks from echograms. Two other
abundance estimation techniques developed were echo integration [7] and

echo counting [8].

The Marine Acoustics Group at the University of Washington was
organized as part of the Sea Grant program in 1968. One of its initial

goals was to develop, apply and evaluate an echo integration system. An
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analog echo integrator was built by Lahore as a master's thesis project
in electrical engineering [7]. A digital echo integration system was
later developed [9]. Statistical analysis of various acoustic abundance
estimation techniques [10], [11] was conducted as a part of the research
discussed in this dissertation. The model used in this statistical
analysis was the reverberation model used earlier in military research.
However, there are two main differences between the biological and mili-
tary applications of the model: (1) the Gaussian process approximation
is not in general valid for a signal scattered from fish; and (2) biolo-
gists are interested in extracting information from reverberation rather

than minimizing its effect.
1.2 Preview

The problem of estimating the scattering density from volume
reverberation is a special case of the general problem of estimating the
intensity of a filtered Poisson process. For this reason, the general
problem is considered first. Chapter 2 contains a summary of the mathe-
matical theory used in the remainder of the dissertation. Some selected
results from the theory of statistical parameter estimation are presented.

The statistical properties of Poisson, filtered Poisson and Gaussian

processes are stated, and in some cases derived.

Chapter 3 considers the general problem of estimating the

intensity factor of a filtered Poisson process. The structures of signal

processors that provide an estimate of the intensity factor are derived

for a number of special cases. A problem that arises when the Gaussian
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process approximation is used for a filtered Poisson process with high

intensity is discussed.

In Chapter 4, the filtered Poisson process model for volume
reverberation is developed. The distribution of the random parameters
that appear in the reverberation signal description is discussed. An
expression for the first order density function for the reverberation

process is obtained and its convergence to the Gaussian density is

investigated.

In Chapter 5, the general theory developed in Chapter 3 is
applied to the reverberation model. The performance of various esti-
mators using independent samples from the reverberation process is
compared with the lower bound on the variance of the intensity estimate.
The two commonly used scattering density estimation techniques, echo
integration and echo counting, are studied in detail. Expressions are
obtained for the variance of the estimates for both processors for
received signals in the absence and presence of additive noise. A
method for estimating the probability density function of the single

scatterer target strength is discussed.

Chapter 6 contains a summary of the major contributions of this

research and suggests a number of areas for further investigation.



CHAPTER 2

MATHEMATICAL PRELIMINARIES

2. Introduction

This chapter contains a brief summary of the mathematical theory
required for an understanding of the results that appear later in the
dissertation. The first part of the chapter deals with statistical
estimation of parameters.! Gaussian and Poisson processes and processes
related to the Poisson process are considered in the remainder of the
chapter. The reader is assumed to have a knowledge of probability

theory and some familiarity with mathematical statistics.

2.1 Statistical Parameter Estimation

Definition (2.1) (estimation model): The estimation model con-

sists of three components:

i) parameter space: The true value of the parameter to be estimated,
Ao’ is a point in éhe Euclidean space Q.2

ii) observation space: The parameter Ao is mapped into a set of
observed random variables RI’RZ’ .es ,Rn in an observation space

that is assumed to be a subset of an n-dimensional Euclidean

n
space, R .

! petailed discussions of statistical estimation theory can be found in the

books by Wilks [12), Cramer [13}, and Hogg and Craig [14].

2 The output of the parameter space can be a random variable or an unknown
constant. In this dissertation, it will be assumed that lo is an unknown constant.

The problem of estimating a random variable is discussed by Van Trees [15].
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iii) estimation rule: On the basis of the observed random variables,
the parameter Ao is to be estimated. The mapping of the obser-

~

vation space into the estimate lo is called the estimation rule.

Definition (2.2) {unbiased estimate): An estimate Ao is unbiased

if E[Ao] = lo where E[ ] denotes mathematical expectation.

Definition (2.3) (consistent estimate): An estimate lo is consis-

~

tent if Ao converges in probability to Ao as n, the number of observations,

goes to infinity.

Definition (2.4) (efficient estimate): Let AO be an unbiased

estimate of lo having finite variance. If no other unbiased estimate has

a smaller variance, then lo is called an efficient estimate for lo.
2.1.1 Sufficient Statistics

Definition (2.5) (sufficient statistic): Let R = {RI’RZ’ - ,Rn}

be a set of n random variables whose distribution function is given by
F(r;)xo).3 A function T(R) is said to be a sufficient statistic for Ao if

the conditional distribution of R, given T(R) = t, is independent of Ao'

Loosely speaking, a sufficient statistic contains all the infor-

mation about Ao that can be obtained from the sample, R.

¥ pistribution and density functions are often written as FR(t) and fR(rJ to
make the reference to the random variable R explicit. 1In most cases, the notation
F{r} and f(r) is self explanatory. This abbreviated notation will be used in the

following except in cases where it leads to confusion,
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Theorem (2.1) (factorization theorem): Let F(r;ko) be a family of

distribution functions having probability density functions f(r;ko] with
respect to a ¢ finite Borel measure, M(dr). Then T(R} is a sufficient
statistic for AO if and only if there exist nomnegative measurable func-

tions V and W such that
f({;lo) = V(T(r) 3A W (x) (2.1)
Proof: Cf. [12], Chapter 12 or [16], Chapter 3.

Definition (2.6) (exponential family of distributions): Let F(r;AO)

be a family of distribution functions having probability density functions
f(g;lo) with respect to a o finite Borel measure, M(dr) and let AO be a
point in a k dimensional parameter space. Then F(r;lo) is said to be a k

paraneter exponential family if

k
£(x;A,) = CA)h()exp 1231 m (At ()] (2.2)

Theorem {(2.2): Let R be a set of randem variables from a k param-

eter exponential family. Then T(R) = (tI(R), e ,tk(R)) is a sufficient

statistic for Ao'
Proof: The proof follows directly from Theorem (2.1}.

The probability density function of independent random variables
taken from a Gaussian, a Poisson, a gamma distribution or many other com-
mon distributions can be written in the form of (2.2). Therefore, the
above theorem provides an easy way of finding sufficient statistics for

estimating parameters from these distributions.



2.1.2 Cramér-Rao Lower Bound

Definition (2.7) (regularity with respect to the first derivative):

Let F(r;lo) be a family of distribution functions having probability
density functionms, f(r;lo) with respect to a fixed, ¢ finite, Borel
measure, M{dr). F{r;AO) is regular with respect to its first Ao deri-

vative if for every estimate Ao of Ao with finite variance
d ~ _ ” .
gx; E[A,(r}] = E[A (£)S(x;2,)] (2.3)
where
S(r;x ) = < In £ (x;2))
~*"0o axo ~*"o

A sufficient condition for regularity is that 3%— 1n f[r;lo) be dominated
O

by some integrable function. (cf. [12], p. 347).

Theorem (2.3) (Cramér-Rao lower bound): Let F(r;lo) be regular

with respect to its first Ao derivative and let Ao be an estimate of lo

with bias b(A)) = E[A -1,], then

A [ev]?
Var[i ] > ——2>— (2.4)

with equality if and only if
S({;Ao) = K[lo- AO- b(Ao)] (2.5)

and where K is not a function of 10.



Proof: Cf. [12], Chapter 12.
2.1.3 Maximum Likelihood Estimates

Definition (2.8) (maximum likelihood estimates): Let F(g;ko),

Te Rn, AOES} be a family of distribution functions having probability

density functions f(r;lo] with respect to a ¢ finite Borel measure, M{dr].

The parameter AO, AOGE £ which maximizes f(r;lo) is called the maximum

likelihood estimate of AO.

If the observed random variables RI’R - ,Rn are independent
and if Ao is an interior point in the parameter space £, then the maximum

likelihood estimate is a solution to
= d
E 3—- 1In f(R 3 A ) =0 (2.6)

Maximum likelihood estimates are important because of the ease
with which they are often obtained and because of their many desirable
properties. Some of these properties are listed below (ff [12], 362,
363):

1) asymptotically unbiased as sample size, n +
ii) asymptotically consistent as n +
iii) if an efficient estimate exists, it is given by the maximum likeli-

hood estimate.
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2.2 Stochastic Processes

Definition (2.9) (stochastic process): A stochastic processu

{r(t),tET} is a collection of random variables defined on a probability
space., The set T is called the index set of the process. When T is a

set of points in an Euclidean space, the process is said to be a discrete
parameter process and when T is a region in an Euclidean space, the proc-

¢ss is said to be a continuous parameter process.

2.2.1 Karhunen-Loéve Expansion

The parameter estimation theory discussed in the first part of this
chapter considered the problem of mapping a point in an n dimensional
Euclidean observation space, Rn, into a parameter estimate ;o' The
Karhunen-Loeve expansion defined in this section allows stochastic proc-
esses that are mean squared continuous on a finite interval to be
included in this estimation theory model. Readers not familiar with the

Karhunen-Loeve expansion can find a derivation and a discussion of its

properties in the book by Van Trees [15].

Definition (2.10) (Karhunen-Lo&ve expansion): Let {r(t), t&€[0,T]}

be a mean squared continuous process on the finite interval [0,T]. Then®

 The stochastic processes considered in this chapter are assumed to be real

processes. Much of the theory developed can be easily extended to apply to complex

processes.

5 1.i.m. denotes limit in the mean.
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R.¢, () (2.7)

fe |
=111

r(t) = l.i.m.
N-»>w»i
where the functions ¢i(t) are square integrable on [0,T] and the following

relationships hold.®

T
SEVAENOENGELES S

L}
=

T
i) Jf) o, (09, (e)ee

i]

P i
< —
= -
Ho H

. Sl

T
ii1) [ ¢, (WK _(t,0)du = 9, (1)
] Hy
iv) E[RiRj] = {0

2.2.2 Gaussian Processes

Definition (2.11) (Gaussian process): A stochastic process {r(t),

tET} is said to be a Gaussian process if for any integer n and any sub-
set {tl,tz, cen ,tn} of T, the n random variables r(tl),r(tz), e r(tn)

are jointly Gaussian.

The Karhunen-Loéve expansion described in the previous section is
particularly useful when dealing with mean squared continuous Gaussian
processes. The random coefficients in (2.7) are obtained by a linear
operation on the Gaussian process and are therefore Gaussian random vari-

ables. Using this fact and property (iv) it follows that Rl, RZ’ ...,Rn

® K (t,u) = Elr(t)r)] - Elr(6)] Elruw)]
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are independent random variables with joint density fumnction given by’

(r; - E[r J)?
-—-————*——- ] (2.8)

'—h
—
r-g

-
-
L[ ]
H
et
i
fr—
s
“ tu1=

2.2.3 Counting Processes

Definition (2.12) (counting process): A counting process N(S) is

a real integer-valued process which counts the number of occurrence points

in the region S in an Euclidean space, R".

Definition (2.13) Poisson process)®: An integer-valued counting

process N(S) is said to be a Poisson process with intensity function v(s)
if the following conditions are fulfilled®:
i) for any integer n and n nonoverlapping rTegions, SI’SZ’ - ’Sn’
the random variables N(Sl),N(Sz), vea ,N(Sn) are independent.
ii) for any region S, the number of counts in the region S is governed

by the following probability law:

? when the process is not Gaussian, the coefficients in (2.7) are pair-wise

uncorrelated but not independent.

® Much of the material on Poisson processes has been taken from the book hy
Parzen [17]. Some of Parzen's results have been extended to apply to the problems.
considered in this dissertation. Proofs of the theorems contained in Parzenr are not

repeated here.

% In many cases of interest, the region S is an interval in a one-dimensional
Euclidean space, Rl. The Poisson process defined on R1 will he designated as {N(o),

t>0}.



13

[‘/E‘:v (s) ds]k

PIN(S) = K] = == exp [-/o(s)ds ] (2.9)
) S
For k = 0,1,2, ... where v(s) is a nonnegative function with bounded

integral.

The process is called a homogeneous Poisson process if the intensity

function satisfies the following relationship
v(s) = v (2.10)
The process is called nonhomogeneous when (2.10) does not hold.

Theorem (2.4) (characteristic function of a Poisson process): Let

{N(t),tzo} be a Poisson process defined on Rl. The characteristic fumction

of {N(t),t>0} is

t

by ey () = exp'[L v(x)dx(el" - 1)] (2.11)

Proof: See Chapter 4 of Parzem [17].

The moments of a Poisson process can be determined from the deri-
vative of the logarithm of the characteristic function. In particular,

the mean and variance of {N(t),t>0} are

BN = 5 55 (0o ]

u=490

t
fo v(x)dx (2.12)
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and

2

-d
Var [N(t)] ——5 |In¢ (u)
ar| duz[ N(t) ]

t
_4 v(x)dx (2.13)

The relationships between various order moments and the logarithm of the

characteristic function are given in the book by Kendall and Stuart [18].

Theorem (2.5) (arrival time distribution): Let {N(t},t>0} be a

Poisson process defined on the interval (0,T] and let Tys see 5Ty where
G<T1<...<Tn<t be the points at which events have occurred. The density

function of TysenoaTy with respect to Lebesgue measure is

t
£(Tyseres T) = V(T)eev(T,) oxp [-f vixyax ] (2.14)

Proof: From property (ii) in Definitiom (2.13), it follows that

the distribution function of the arrival time of the first event is

F(Tl) 1-Prob [no event in (U,Tl]]

T
1-exp [—./0‘ lv(x)dx] (2.15)

and the corresponding demnsity function is

T
£(1)) = (—1—% Fry) = v(t) exp [-/f, vixydx ] (2.16)
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The number of events in disjoint time intervals is independent by (i)

of Definition (2.13). Therefore, the joint density of TysreesTy is

T
- veyax
f(TISOOO,Tn) = \J(Tl) e . e o = )
- " veodx -./,; v(x}dx (2.17)
u(Tn)e n-1 e n
t
= U(Tl)...U(Tn) exp [-Jg v(x)dx] (2.18)

In (2.17), all terms except the last are density functions for the inter-

vals and the last term is the probability of no event between T, and t.

Theorem (2.6): Let {N(t),t>0} and TyseeesTy be defined as in

Theorem (2.5). The density function of TyreeesTy given that exactly n

events occurred in {0,t] is

f(t T ln events in (0,t])

1700y

v(Tl)...v(Tn)n! ( )
= 2.1

- t n
[jc') v(x)dx]

Proof: The proof follows directly from Theorem (2.5) and Bayes

rule for conditional density functions.
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2.2.4 Filtered Poisson Processes

Definition (2.14) (filtered Poisson process): A stochastic

process {r(t),tfo} is defined to be a filtered Poisson process if it can

be represented by

N(t)
r(t) = 2u 2(t,7,0 ) (2.20)

m=1
where {N(t),t>0} is a Poisson process, {Om} is a sequence of independent
random vectors that are independent of {N(t),tzﬂ}, L is the occurrence

time of the mth event and z(t,T,®) is a function of the variables t,T and

Q where z(t,T,Q} =0 for t < T.

Theorem (2.7): Let {r(t),t>0} be a filtered Poisson process. Then

for any tn>tn_1 i tlfo, n>l and real numbers UpsUys eve U, the joint

characteristic function of r[tl),r(tz), v ,r(tn) is

¢r(t ,...,r(tn)(ul’UZ""’un)

1

leZ(tl,X,9)+--.+jun2(tn,X,9)

t
= exp{f(; l\J(x)E[e - 1]dx
t ju,z(t,,x,0)+...ju_z(t_,x,0)
+f:c2v(x)E[e N o J)ax
1
. (2.21)
t ju z(t_,x,6)

+J; n v(x)E[e - 1]dx }

n-1



17
Proof: The joint characteristic function of the random variables

r(tl),r(tz), ,r(tn) is by definition

[ un) = E exp[[j_z:luir(ti)]
1=

r(tl),...,r(tn)(ul""’

N(t_)
= E[exp (j Z? g, ()] (2.22)

where
8, (T = ulz(tl,rm,gm)+...+unz[tn,1m,§m)

Using conditional expectations, (2.22) can be rewritten as

¢r(t1),.. .,r(tn) (ul"' "un} =

N N(t_)
E:OE [exp (j 2: gm('rm))/N(tn) = k]P[N[tn) = k] (2.23)
= m=

The conditional expectation in (2.23) can be written as

N(E )
E [exp (5 Zl g (t YNt ) = K]
m=
N(t)
f n.[t n _/‘ E[e)cp (3 Z g ()N ) =k, T, ] (2.24)

£(Tye e oo /N(E) = K)dTy, ... ,dTy

Using the arrival time density function obtained in Theorem (2.6}, the

conditional expectation becomes
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N(tn)
Elew (s 2 g (1) /N(e) = K]
m=

o t, .tk
= —— S [T T N {E[exp(ig (r ) IV(T,)) (2.25)
[Jg nv(x)dx] k-1 m=1

dTl...di

The multiple integral in (2.25) can be written as a single integral raised

to the kth power (cf. [17], p. 155).

N(t)
E[exp(j E: gm(rm))/N(tn) = k]
m=
1 tn k
= < T [~/c; v(x)E[exp(jg(x))]dx] (2.26)
[_/Ol n\)(x)dx]

Substituting (2.26) into (2.23), it follows that

¢r(t1),_,.’r(tn)(ul,...,un) =

t k
t d ™ (x)E[exp[jg(x)] dx

exp [—fo n\)(x)dx]z [£ - k'[ . ] (2.27)

k=0 !

The form of the characteristic function in (2.21) is obtained by writing

the summation in (2.27) as an exponential,

The characteristic function in (2.21) is used to obtain some moments
of a filtered Poisson process in Appendix A. It is easily shown that the

mean, m(t), and variance, dz(t), of r(t) are
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t

n(t) fo v()E[z(t,x,0)]dx (2.28)

t

oty = [ vOE[22(t,x,0) Jdx (2.29)

Definition (2.15): A stochastic process {r(t),tE&T} with finite

second moments and whose distribution depends on some parameter is said
to be asymptotically Gaussian as the parameter tends to a given limit if
the following conditions hold for every set of indices tiotys oo Sstod

the joint characteristic function of the standarized random variables,

r*(tl),r*(tz), e ,r*{tn), where

r*(ti) = 0[r£ti)] (2.30)
satisfies
9wt ), nrr(e) Bt T
n
i
L ZZ uyuolr (e r(t))] (2.31)
i,j=1
as the parameter tends to the given limit, where
E[r(t.)r(t.)] - E[x(t,) JE[r(t;)]
r ) = ] (2.32)

plr(tyr(ry] = STr (e To [ (e, ]

and where U[r(ti)] is the standard deviation of r(ti).
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Theorem (2.8): Let {r(t),t>0} be a filtered Poisson process with

intensity function v(x) AOB(x) where B(x)>0 for x>0, and let

t
m(t) = A [ BCOE[2(t,x,0)]dx (2.33)
2 t 2
o° (1) = xo_{ B(XE[2°(t,x,0)]dx (2.34)
t
fo B(X)E[z(t.,x,0)z(t,,X,0)]dx
p(t;,t) = e (2.35)
t
V[ 8eaEl2(t;,x,0) Tax f) BOELZ"(t;,%,0) )dx
t 3
k(t) = A, [, BOOE[z”(t,x,0)]dx - (2.36)

If the mean, m(t)}, the variance, Uz(t), and the third cumulant, k(t} are

finite for all t, thenm {r(t),t>0} is asymptotically Gaussian as Ao + @,

Proof: The characteristic function of the filtered Poisson process

as determined in Theorem {2.7) can be written as

¢r(tl),...,r(tn)(ul""’un) -

t . .
exp[ f V0E Uz (t1a X0 wju2 (6, %,0) gy (2.37)

where z(ti,x,e) = 0 for ti<x and i = 1,2, ... ,n. Expanding the logarithm

in a power series, it follows that



21

In ¢r(t1),...,r(tn)(u1’""un)

J}'_:u m(t. )-_£§ wyu p(t,,t,)0(t))alty) (2.38)
1

3
* coiluil K(t;)
i=1

where |CO\<1. Define a new vector random process {r*(t),t>0} where

r(ti)- m(ti)

T* (ti) = G(ti] (2.39)

It follows from the definition of the characteristic function, (2.38) and

(2.39) that
1 Tl
In $r*(t)),...,T* (¢ ) (upseeeaug) =-3 REI“L“}(D(%'%)
o [ B00EL
n B(x)E[z"(t,x,0)]dx
s L2 ¥ 2 o = (2.40)
V—— =1 t 2 3/2
o WA E (t,x,8)]dx]
and
1 It
Lin Srage )., et (e ) (uy,.--u) =-5£%=1u£ukp(tz,tk) (2.41)

PR ]
o]



CHAPTER 3

POISSON INTENSITY ESTIMATION

3. Introduction

A filtered Poisson process is a reasonable model for many random
phenomena occurring in nature. As was mentioned in Chapter 1, the filtered
Poissen process was originally used as a model for shot noise. It will
be shown in the next chapter that acoustic volume reverberation camn also
be modeled by a filtered Poisson process. Some other examples of filtered
Poisson processes are given in reference [17]. This chapter deals with
the problem of estimating the Poisson intensity factor from a filtered
Poisson process. Such an estimate often provides information about the

physical environment that produced the process.

A number of aspects of the Poisson intensity estimation problem
are considered in this chapter. The problem of estimating the intensity
of a Poisson counting process is discussed in the first section. It is
then shown in the second section that the problem of estimating the
intensity of a filtered Poisson process is in many cases equivalent (in
theory) to the problem considered in the first section. A problem that
arises when the Gaussian process approximation is used for a filtered
Poisson process with high intensity is discussed. The maximum likelihood
estimator for the intensity factor using independent samples from the
filtered Poisson process is derived and a bound on the variance of the

estimate is obtained.
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3.1 Poisson Counting Process Intensity Estimation

The estimation problem considered in this section is the following.
Let {N{t},t>0} be a nonhomogeneous Poisson counting process with inten-

sity function v(t) where
v(t) = AOB(t) (3.1)

and B(t) is a known deterministic real positive function defined in the
interval [0,t]. We wish to find an estimate of Ao from a realization of
the process {N(t),t>0}. The available information or statistics that

can be used in obtaining the estimate of lo are the occurrence times of
the Poisson events 11,12,...,Tk. The joint density function of 11,12,...,

T, with respect to Lesbegue measure obtained in Theorem (2.5) is

k
K t
f(Tl’Tz’“"Tk) = AOB(TI)...B(Tk)exp [— Aoj‘; B(x)dx]
(3.2)

= exp [kln)\o + ln[B(Tl)...B(Tk)]- J\O _gtB(x)dx]

The second form of the density function shows that the distribution of the
arrival times is a one parameter exponential family. Using Theorem (2.2),
it follows that k, the number of Poisson events in [0,t], is a sufficient
statistic for Ao. In other words, the number of events, k, contains all
the useful information about the parameter lo and the estimate of Ao can

be based solely on k.
The probability density function of k given in Definition {2.13) is

t k
A B(x)d t
M exp[_ Aofo B(x)dx] (3.3)

flkirg) = K
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The maximum likelihood estimate for Ao in terms of k is given by

d f(k;A ) A~ =0
dx OIa =2
0 0 0
t k
: [AOJ; B(x)dx] t
I T exp |- 2\0‘/0. B(x)dx = 0
o ATk
o} e}
The solution to (3.4) is
A k
lo N “ft
b B(x)dx
The expected value of the estimate is
- B,
o L (o}
£ Boax
and the variance is
A 2 A
- E[k"] oy 2 0
Var[ko] I 7\0 =~
[fo 6(dex] SBx)dx

(3.4}

(3.5)

(3.6)

(3.7)

Therefore, the estimate is unbiased and is consistent.® The Cramér-Rao

lower bound on the variance of an estimate of AO stated in Theorem (2.3)

is

-1
" 2
Var[AO] = (E [ég—o 1n f(k;)\o) ])

! Since B(x) >0, xelo,t], )\0 converges to )LO in the mean squared sense as
t + «, The consistency of io follows by recalling that convergence in the mean

squared sense implies convergence in probability.
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t
1
k [ B(x)dx 2 A
- E[{J(;t—-- -ftB(x)dx}J - (3.8)
AOJO‘ B(x)ax © ‘é 8 (x) dx

The variance in (3.7} satisfies the Cramér-Rao bound with equality and

therefore, Ao is an efficient estimate of AO.
3.2 Filtered Poisson Process Intensity Estimation

Let {r(t),th} be a filtered Poisson process defined by

N(t)
r(t) = & 2(t,7,,0,) (3.9)
1

n=
where {N(t),t>0} is a Poisson counting process with intensity v(t) = A,
B(t). When the individual Poisson events are discernible, the problem of
estimating Ao reduces to the problem considered in the previous section
and the intensity factor estimate is given by (3.5). The following theorem
shows that under some rather general conditions, the Poisson occurrence

times, T;» can in theory be uniquely determined from the observed process

r(t).

Theorem (3.1): Let {rl(tJ,tEO} and {rz(t),tgo} be filtered Poisson

processes defined by

N, (0
rl(tJ = 2:1 zl(t,rlm,glm) (3.10)
mn=
N ()
(8 = B 2,(t,1,,,0,) (3.11)

k=1
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where the response functions zl(t,Tlm,le) and zz(t,TZm,QZmJ satisfy the
following conditions:
. . 2 . . .
i) zj(t,rjk,gjk) is analytic® in the interval (Tjk’Tjk] and is zero
outside the interval CTjk’Tjk] with probability 1 for j = 1,2 and
all k.
ii) zj(t,Tjk,ij)>O with probability 1 for some t(E(Tjk,Tjk] for j =

1,2 and all k.
Then if rl(t) = rz(tJ for all t€&[0,T] it follows that

zl(t,rli,@

~1i) = zz(t,T 0,5.) (3.12)

2i°32i
for all i.

Proof:

Since {Nl(tj,tfo} and {Nz(t),tfo} are Poisson processes, it follows

that

T,, > 0 L =1,2 (3.13)

21

o)
[

lTg; - Tgsql >0 =1,2 alli>1 (3.14)

with probability 1. Without loss of generality, it can be assumed that

T > T > 0. (3.15)

% A function is analytic at a point z, if and only if it can be represented by

a power series that is convergent throughout a neighborhood of Z, (cf.[19], p.192).
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Over the interval (rll,min(T 2Ty 2)) the only contribution to rl(t) is

zy (t, Tl]’ 1) and the only contribution to T, {t) is zz(t,TZI, 21) Since
(t) =T, (t) for all t€ {0, T], it follows that z (t »Tpq 8 21) 2(t,Tll,
) over the interval (T l,mln(Tzz,le)] which has nonzero length with

probab111ty 1 by (3.14). By analytic continuation (cf. [19], p. 206),

zl(t’Tll’Qll) = zz(t,‘ru 21) for all te('rll, 11] and by assumption (i)

will be equal to zero outside [Tll,Tll].

Since zl(t,Tll,@ll) (which equals zz(t,rzl,QZI)) is known over its
entire nonzero time interval it can be substracted from rl(t) and rz(t).

The same procedure can now be used to show that zl(t,le,sz) = ZZ(t’TZZ’

0y0)» % (8T 5085 = 22(tTpp0p3) €

The above theorem shows that if the response functions are analytic,
the Poisson occurrence times can be obtained from the observed process {r(t),
t>0}. In this case, the estimate of A, is obtained using (3.5) and the

variance of the estimate is given by (3.7).

The class of analytic functions is quite general. One subclass 1is
the generalized exponential functions which include real and complex expo-

nentials, sinesoids and sums and products of these functions.

Theorem (3.1) does not provide a practical solution to the problem
of estimating the intensity factor of a filtered Poisson process since it
is not in general possible to implement a signal processor that will resolve
all individual Poisson events. However, the theorem shows that the vari-

ance of any estimate of Ao is lower bounded by the variance in (3.7).
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Covlr(t),r(w)] = A p_(t,u) (5.18)

where pr(t,u) is a deterministic function of t and u defined by

min(t,u)
o (tw) = [ BGOE(2(t,%,8)2(u,x,0) ] dx (3.19)

The problem of estimating the intensity factor, lo’ is equivalent to the
problem of estimating the scale factor of the covariance function of the

Gaussian process approximation for {r(t),t>0}.

The maximum likelihood estimate of Ao can be obtained using the
Karhunen-Loeve expansion described in Section 2.2.2 Define the random

variables Ri by

T
R, = Jf r(t)¢; (t)dt (3.20)

with the functions ¢i(t) chosen to satisfy

T
Y4 (8) = .gpr(t.u)cbi(u)du (3.21)

Using the Gaussian approximation for r(t) and the properties of the
Karhunen-lLoéve expansion, it follows that Ri are independent Gaussian

random variables with E[Ri] = 0 and Var[Ri] = AoYi' The process

K
NOED> R, () (3.22)
i=1

converges to {r(t),t>0} in the mean square sense as k approaches infinity.

The joint density function for Rl’ - ,Rk is
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k 1
Y - Y 2
..,rk,Ao) E (ZWKOYj) exp{ rj /2h0Yj} (3.23)

=1

f(rl,.

The maximum likelihood estimate of Ao in terms of Ris «-- Ry 1s given by

d . -
7 FRp - RGA) A =0 (3.24)
o] A=A

Using the density in (3.23) it follows that

k
Ay = x 2 RS/ (3.25)
Jj=1
where Rﬂ/f?; are independent Gaussian random variables with
E|R. .]=0 3.26
[’ /5 ] (3.26)

Var[Rj /W—J ] = )\O

It can be shown that kko/lo is chi-squared distributed with k-1 degrees of

freedom (cf. [12], p. 208). The variance of the estimate, AO, which is

obtained from the moments of the chi-squared random variable is

2 2 .2 2
N A KA A K\
Var[A =0El°]—O[E —°]
ar[A ] 2 [ A ] 2 [ X, ]
A2 A2

]

2
0 2 o ¢sk"-2k-1
2 -1+ ( )
k2 k2 2

2

24
5 (k- 1) (3.27)
k
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For a positive definite covariance function, the number of terms in the

Karhunen-Loéve expansion is infinite (cf. [15], p. 303) and

lim Var [A ] = 0 (3.28)
o
k- oo
With the Gaussian process assumption, (3.28) shows that it is possible to
obtain a zero variance estimate of AO from any finite observation interval
[0,T].® However, the Poisson counting process analysis has shown that the

minimum variance attainable is

~ AO
Var [lo]= z (3.29)
J; B(x)dx

The source of the dilemma is the two contradicting assumptions made at the
beginning of the analysis. The assumption that r(t) has finite variance
requires that AO is bounded. On the other hand, the convergence to a
Gaussian process requires that lo goes to infinity. Bounded moments and
Gaussian convergence can be obtained for the modified process {r(t)/#ﬁ;,

t >0}. The covariance of this new process is not a function of A, and
therefore does not provide a means of estimating lo. The rather disturb-

ing existence of a consistent estimate of'hofrom a finite observation

' The existence of a zero variance estimate for the covariance function scale
factor has been discussed previously. Scharf and Lytle [20] have investigated the
stability of the estimate and have found that the number of terms in the Karhunen-
Loeve expansion should not exceed the time-bandwidth product of the stationary
process. The reader is referred to [20] for further discussion and a list of related

references.
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interval of a Gaussian process can be avoided in a number of ways. For
example, the estimate can be based on a finite number of samples from
the process. The problem of estimating Ao using independent samples from
the process is considered in the next section. The presence of some white
Gaussian noise in the observed data also results in an estimate with non-
zero variance. Although practical methods for estimating lo can be de-
rived using the Gaussian model, the performance of the estimators should
be evaluated using the statistical properties of the filtered Poisson

process.
3.4 Intensity Estimates Using Independent Samples

In many cases of interest, the response functioms, z(t,T,0), of
the filtered Poisson process {r(t),t> 0} defined in (3.10) are of fixed

duration. That is,
z(t,7,8) =0 for t >+ T (3.30)

When (3.30) is satisfied, the random variables obtained by sampling r(t)
at a rate less than or equal to 1/T are independent. The independence
of the samples follows from the independent increment property of the

Poisson process and the assumed independence of the random vectors O.

The problem of estimating lo using independent samples from {r(t),
t >0} is considered in the following. Two limiting cases of the estimation

problem are investigated first.
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3.4.1 Low and High Density Estimates

Let Ry, Rz, . R be the variables obtained by sampling {r(t),
t >0} at times tys ty, -ees to. The process will be designated as a low
density process when
Y
f IRWIGEES i=1, ..., n (3.31)

i
and as a high density process when

tj
S

A B(x)dx>>1 i=1, ..., n (3.32)
T O
1
For the low density process, the probability of more than one
Poisson event occurring in the interval (ti'T’ti) is very small. There-
fore, if the individual response functions, z(t,T,0) are nonzerc with
probability 1 on the interval [Ti,Ti+T), the number of Poisson events,

ki’ occurring in the interval (ti—T,ti) can be approximated by

(3.33)

P
‘-l
i
i
-0
~
H-’.J-
“P
oo

That is, the individual events are resolved by sampling the low density
process at a rate of 1/T. The optimum estimate of Ao for this case is

given by (3.5). The block diagram for the corresponding signal processor

is shown in Figure 3.1.
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SAMPLE AT "1 R#O i °
RATE =1/T
S B
[ B(x)dx
Figure 3.1. Low density estimator
The mean and variance of the low density estimate are
n
E[\,] = ——E;-—L-—— 2 E[Y,] (3.34)
i=1
f B(x)dx
t
n 111
3 1
Var[;\o] = tn 2 4 . {E[Yin]-E[Yi] E[YJ]}
[_ft B(x)dx] i=1 j=1
1
n
= 20 {E[Y]] - B[Y; D%} (3.35)
i=1

The last equality follows from the independence of the Yi. The first and

second moments of Yi are

E[Y,] = E[Yi] = 1+ Prob [one or more events in (t;-T,t,)]

t-
= 1 - exp [-hof lTB(x)dx] (3.36)
i-—
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It follows from (3.34), (3.35) and (3.36) that

n -z:exp [—AOI B(x)dx

E[io] ) t (3.37)
f B(x)dx
(31
L t- t-
,\ iZ=:1(e:<1: [ —AOJ;.{TB(x)dx]—exp [-noft:TB(x)dx])
var [l - ; Z - (3.38)

t
[ft nB(x)dx]
1

The samples R;, Ry, ... Ry from a high density process have a
Gaussian distribution as Ao approaches infinity. The mean and variance

of the independent samples from {r(t}, t>0} are

E[R,] = A m
_ 2
Var [Ri] = Aogi (3.39)
where
ty
m = [ 7 BOOE[=(t;,x,0)]dx
t;-T
and
t:i. 2
ol =’£ -TB(x)E[z (T;,x,0)]dx
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In many cases of interest, such as the reverberation problem considered
in the Following chapters, {r(t},t>0} is zero mean. The joint density

function for the zero mean samples using the Gaussian assumption is

n - Ty 2
1
f(rl,...,rn) = -H —— exp[ > ]
i=1 ™ 0-2 2A %4
01
n
1
- n72 exp[ T ; ] (3.40)
( T ) 9192°-+% =9

n
It follows from Theorems (2.1) and (2.2} that z: triz/ciz) is a sufficient
1=]1

statistic for estimating AO. The maximum likelihood estimate is the

solution to

o 10 ER R ) =0 (3.41)
0 A= A
0 o]
and
N ) n R2
A, = = PP (3.42)
n 2
i=1 o.

A block diagram of the high density processor is shown in Figure 3.2.

r{t) R. SQUARING n
\ i ~
> cirRcuUIT 2 o
SAMPLE AT i=1
RATE = 1/T
1
T, &

1

Figure 3.2. High density estimator
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The expected value of the estimate in (3.42) is

n
- E[R ]
1
E[;\o] = E ).0 (3.43)
i=1 U.
i
The variance of AO is
Var[A ] = E[(A - E[x 1) 2
ar[A,] = E[(A;- E[A 1]

e[20))

1

n
B i RS U
2 i1 oi4

=
=
o]

The fourth moment of Ri can be calculated using the assumed Gaussian dis-

tribution or the actual filtered Poisson distribution. For the Gaussian
distribution,

B[R, %] = 3E[R, )2 - 3*02014 (3.45)

and

o 2., 2
Var[ko] = E'lo (3.46)

It can be shown that for the density function in (3.40) the variance of
Ao satisfies the Cramér-Rao bound with equality. Therefore, Ao is the
minimum variance, unbiased estimate of Ao for the assumed Gaussian distri-

bution of the samples RI’RZ’ .o ’Rn'
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The fourth moment for a sample from a zero mean filtered Poisson

process given in (A.1ll) is

4 2 4
E[R.1 ] = Aom4i+-310 05 (3.47)
where
Y 4
m,. = Jii_TB(x)E[z (ti,x,g)]dx
Therefore, the variance of ko is
n
N A m,.
_ 0 41 2, 2
Var[)\o] = = ; 2t )\0 (3.48)
n i=1 Ui

The second term in (3.48) dominates in high densities and the variance
expression reduces to (3.46). Unlike the continuous process estimate
discussed in Section 3.3, the Gaussian approximation for independent
samples from a high density process produces a result that asymptotically

agrees with the Poisson process result.
3.4.2 General Estimator Using Independent Samples

In the general case, the distribution function of the random

variable obtained by sampling {r(t),t>0} at time t' can be written as

A) = & F(rt,/k]Prob(k;lo,t') (3.49)

F(rt,;
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where F{rt,/k) is the distribution of Rt' conditioned on the occurrence
of k Poisson events in the interval [t'-T,t"'] and Prob(k;lo,t') is the

probability of k events occurring in [t'-T,t'], that is,

t! k
L, hBmad t!
Prob(k;ko,t') = [ t-1 E! - X] exp [—J{,_Tkoﬂ(x)dx] (3.50)

If it is assumed that F(rt,/k) has a density, f(rt,/k) with respect to a

fixed measure, M(dr), then the density of F(rt') (with respect to M(dr)

is
o poaax]
w A B(x)dx (ol
1_
£(r,,;h.) = t'-To exp [-J, A B(x)ax | £(xr,,/k) (3.51)
t t'-T' o t
k=o k!
The maximum likelihood estimate of RO in terms of the independent
samples RI’RZ’ . ,Rn is the solution to (2.6). Using the density

function in (3.51)},

noo, n o 2 : F(R, /K)
¥ f Lb(oax + 2 2kl (k-1) ! =0 (3.52)
i=1 i=1 ti k
- [fti_,rxoe(x)dx]
- kT G T PUN
Q 0

Assuming regularity with respect to the first derivative of F(tt,;t), the
Cramér-Rao bound on the variance of the estimate is

. (1+b[r 112
Var[A ] > (3.53)

[(é -§E— In £R;;1) ) ]
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.

where b[AO] is the bias in the estimate. Since the bias is in general
unknown, the following lower bound on the variance of the estimate can

be used.

Var[io] > (3.54)

E[(E In £(R,;) )) ]

3.4.3 Recursive Estimation of AO

Maximum likelihood estimation of Ao is not practical for real time
data processing systems. The maximum likelihood estimate must be deter-
mined by numerically solving (3.52) for Ao for a set of cbserved sample

R

values R ’Rn' If additional samples are obtained, the previous

1°Rys -r-
estimate can not simply be updated. A new solution to (3.52) must be
obtained using both the old and new sample values. Numerical solution of

(3.52) is complicated by the infinite series representation for the

sample value density function.

The problems connected with the maximum likelihood estimate make
a recursive estimation algorithm for AO desirable. The technique of
stochastic approximation introduced by Robbins and Monro [21] can be

used in many cases to obtain such an algorithm.

The stochastic approximation algorithm to be used is the following.
Let R ,R -«+. ;R be a sequence of independent, identically distributed
i n
random cbservations and let Z(R,)) be a random variable whose distribution

depends on R and the parameter A. If E(Z(R,AO)} = 0, then the algorithm



Apel = An - anz(Rn’ln) (3.55)

where

Y a = (3.56)

n=1
and

2 og
2 a < (3.57)
n=1

converges to Ao with probability one provided that E[Z(R,})] satisfy

certain weak conditions [21].

If RI’R Rn are samples from a homogeneous Poisson process

g1 v
and Z(R,A) is defined as

Z(R,A) = - 3= 1n £ (R,))
then
E[ZR,N)] = -f F(r,A) £¢ In £, \IM(dr) (3.58)

If it is assumed that F(r,A) is regular with respect to its first deriva-

tive, then

1l

S 7 E(r;r0)M(dr)

TN J 7 In[E(rsA ) TE(x;A M(dr)

— oD

(3.59)

E{Z(R;2 )]
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However,
H%f_: £(r;A JM(dr) = Egg (1) = 0 (3.60)
and
E[Z(R;A )] = 0 (3.61)

Therefore, the recursive estimation aglgorithm for Ao is
A=A +a [—d-—f(R°?t)] (3.62)
n+1l n n dln n’’'n :

Any choice of coefficients, a s may be used, provided that the two condi-

tions in (3.56) and (3.57) are satisfied. One choice for a is

a = % 6, (\) (3.63)

where

1
G (A ) =
n-'n d . 2
E[(;r;g In £R50)) ]

That is, G (A ) is the Cramér-Rao bound for an unbiased estimate assum-
ing that An is the true parameter value. Sakrison [22] has shown that
under certain weak conditions, the stochastic approximation algorithm in

(3.62) with a defined in (3.63) is asymptoticallyefficient. A block
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diagram of the recursive estimator defined by (3.62) and (3.63) is shown

in Figure 3.3.

A
d « h4l
Ry - Ry G510 Ry i) X >®— ?
\

Sy

+6,(A)

A | UNIT
DELAY

Figure 3.3. Recursive estimator

It is interesting to study the structure of the recursive estima-

tor for low and high density processes. For the low density process,

e nT r =0
n
£(r 2 ) = T (3.64)
AnTe n r #0
and
-T r =0
d n
HX;'[ln f(rn;hn)] = . {3.65)
-T+}l_ I‘n # 0
n
th . . . .
The n™" term in the gain sequence, a_, is approximated by



A
=1 L
a =-6 () =g (3.66)
Therefore, the total algorithm is
A
.0 R =0
n n
Aap = At A (3.67)
" AT Ry # 0

It is easily shown that the algorithm in (3.67) is equivalent to the max-
jmum likelihood estimator for a low demsity process (see Figure 3.1).

The equation for the maximum likelihood estimate in Figure 3.1 is

n
-1
Apel T nT,:: Yy (3.68)
i=1
where
0 R. =0
i
Y, =
i
1 R. # 0
Equation (3.68) can be rewritten as
n-1
_(n-1 1 1
M -( n )(n-l)T 2 Grar
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Therefore, (3.67) and (3.68) are equivalent.

For the high density process, the density function for the n

sample is approximately

2
T
) _ 1 _ 1 n
f(rn,ln) = exp[ 3 N 02]
Mo~ A n
n
where
T
02 = fo E[zz(t,x,g)]dx
and the function Z(r ,A_} is
n'’n
2
d 1 rn
Z(r 2 ) =- gy [In £(x A )] _—ﬁ-; ;\_0—2-1]
n

The nth term in the gain sequence is

1 1

1 )
n E[(EDg In £(r ;A))) |

Ay = A+ [ ] (3.69)
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It can be easily shown that (3.69) is equivalent to the high density

maximm likelihood estimator shown in Figure 3.2.

The recursive algorithm in (3.62) requires that all the parameters
of the sample value density function f(rn;ko), except AO, be known a
priori. When this assumption is not satisfied, the algorithm can be
modified to estimate all the unknown parameters simultaneously [22]. The
algorithm also requires that the sample values be from a stationary pro-
cess. Recent work on stochastic approximation algorithms [23] has shown
that this condition can be relaxed if the form of the nonstationariness is
known. When the samples are nonstationary, Z(Rn;ln) is a function of

Rn,An and t and the gain sequence, a_, is a function of ln and t_.



CHAPTER 4

REVERBERATION MODEL

4. Introduction

The initial purpose of the research described in this dissertation
was to analyze and develop active sonar systems for estimating the spatial
abundance of marine organisms. By making certain assumptions about the
spatial distribution of the organisms, the problem reduced to a special
case of the general problem described in the last chapter. The remainder
of the dissertation deals with the specific problem of using an active
sonar to estimate the abundance of scatterers with a spatial Poisson dis-
tribution. In this chapter, the relationship between the physical model
and the statistical characteristics of the scattered signal is investi-

gated.

4.1 Scattering Model

There are two general approaches to the problem of characterizing
the signal reflected from a scattering field: the classical approach and
the phenomenological approach. The classical approach to the problem
starts with the wave equation for propagation in an inhomogenecus medium
and attempts to determine a solution or approximate solution satisfying
the necessary boundary conditions. It is extremely difficult to obtain
the detailed statistical characteristics of the reverberation with this
approach. The phenomenological approach to the problem starts with some

random distribution of point scatterers and assumes that the rest of the
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medium is homogeneous and isotropicl. This approach is valid if the
sizes of the scatterers are of the order of a wavelength or less and if
the effects of multiple scattering are negligible. This type of scat-
tering is often called first order point scattering. It is assumed that
the conditions for first order point scattering are satisfied in the
following development. The following additional assumptions about the

scattering model are also made:

1} co-location of the acoustic transducer and the receiver
2) constant velocity of propagation in the medium

3) the transmitted signal is narrowband’
4) the reflective properties of the individual scatterers are

not a function of time or frequency.

Assumptions 1 to 3 are reasonable for typical sonar systems with a verti-
cal beam pattern. Analysis of sonar systems with nonvertical beams should
include the effects of sound velocity variations with depth. Assumption

4 implies that the signal reflected from a scatterer is a scaled replica

! A more detailed comparison of the two approaches to.the scattering problem and

a list of related references is contained in the papers by Middleton [3].

2 A signal, r(t), is narrowband if it can be written as

jmct
r(t) = Re[f(t)e ]
where f(t), the complex envelope, is slowly varying with respect to exp(jmct).
Several properties of narrowband signals are discussed in Appendix A of Volume 3

of Van Trees [5].
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of the incident signal. Signal distortion occurs when the scatterer has
a resonant structure in the frequency bandwidth of the incident signal
or when the reflective boundary in the scatterer is not well defined.
Middleton has suggested that this type of distortion can be accounted
for by modeling the scatterer as a stochastic linear filter [3]. A
reverberation model that accounts for nonzero velocity gradients and
pulse distortion would apply to a larger class of problem than the model
presented in this chapter but would not provide any additional insight

into the problem of statistically estimating the scattering density.

4.1.1 Single Scatterer

The following model is used for the sonar system. A narrowband
signal, st(t), is applied to an acoustic transmitter at t = 0. The
signal can be written in complex envelope notation as

ju t
VZE, Re[f(tye © ] t20
(4.1)

s.(t) =
t 0 t<0

where Et is the energy in the signal, W is the carrier frequency and
f{t) is the complex envelope normalized to have unity energy. The
acoustic transmitter is assumed to have ideal linear response character-
istics, that is, the pressure wave out of the transmitter is proportional
to the input voltage. Assume that a single scatterer is located at polar
coordinates (r,0,¢) relative to the transmitting source and has an inward

radial velocity of V.. as shown in Figure 4.1.% Further, assume that the

} The source and transmitter may have any general velocity vectors. The only

part of the velocity that must be specified is Vo
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norizental distance traveled by the transmitter between the time of

transmission and the time of reception of the signal is negligible.

TRANSMITTER

> Y

SCATTERER

Zz

Figure 4.1. Geometry for scattering model

The received signal resulting from the scatterer at (r,0,) is

-o ct j{(mcq-mD]t+ w}]

2
r(t) = ﬁg_(8,¢)ez AARe[f(t- 2r/c)e
(ct/2)}

(4.2)

where ¢ is the velocity of propagation, exp(-aoct)/(ct/ZJ2 is the propa-
gation loss due to spherical spreading and absorption, g(8,¢) is the
value of the beam pattern directivity function at angular coordinates
(8,9), w is the phase of the returned signal, W is the Doppler shift
introduced by the scatterer and A is an amplitude factor that accounts

for the size of the scatterer, its angle of illumination, etc.
The Doppler shift can be approximated by

W T (4.3
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provided that vr/c<<1. The radial component of the scatterer velocity,
Vo also causes a compression or stretching of the time scale of the
pulse envelope, f(t). This effect can be ignored provided that the
time-bandwidth product; WI, satisfies the following relationship (cf.

[5], p. 241)

WT << 5— (4.4)

4.1.2 Several Scatterers

An expression for the received signal due to several scatterers

follows directly from the first order point scattering assumption and

(4.2).

b))

r(t) = z(t,ri,gi)

i=1

where
A;82(8;,0;)e % s
z(t, 13, 8) = 1 1 3 Re[f(t-Ti)eJ{(wC wDi)t+wi]] (4.5)
h (et/2)

“ In the case of a time limited signal, the bandwidth, W, is defined such that

w w
£w|3'{f(t)}|zdt = .9_£w|3{f(t}}!2dt.

A similar definition can be made for the time duration of a bandlimited signal.
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and N{t) is the number of scattered signals (echoes) arriving at the re-

ceiver in the time interval [0,t]. The statistical properties of the

parameter vector, 0. = {6.,¢.,A_,w_,P.}, and N(t) must be specified to
~i s RS Rl R TR |

complete the model.

The number of echoes received in the time interval, [0,t], is a
function of the spatial distribution of the scatterers. It will be as-
sumed that the scatterers have a nonhomogeneous Poisson distribution in
volume with a spatial intensity function, vS(VJ, that is,

[ fo,onav]*

= exp [._[uS (V)dv] (4.6)

PIN(S)=k] =

The underlying assumptions for the Poisson distribution were given in

Definition (2.13). The Poisson intensity as a function of time t is

v(e) = o[ ey LD o] (4.7)
o)

where V(t') is the volume insonified in the time interval [0,t'].

In many applications, the sonar system has a vertical beam and a
spatial density that is only a function of the depth, d. In this case,

(4.7) beccmes

v(t) = a‘% [j;tvs (ct r;ose) SVB(:") dt') (4.8)

where 8 is shown in Figure 4.1. Some particular cases are given below.
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Case 1):

constant density, vS(V) = AO

at!

w(t) =-ad?[f0t r, S qe1]

sinfdd |

3
d to 2 a2
ol [XOJ; dtL T t
A 'ncst2
= °
4
Case 2):
scattering layer,
0 if d < d
0
v (V) = v (d) =
; >
A, if d > d
-1
¢ cos (2d _/et")
d 2007203
e 2m [ ar f t12¢c/2)3sin0ds
2d o]
T
vit) =
0

if

et

< d
o

(4.9)
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ot

3 2
l 2mA, [(%) 2 - (%) dot] 'fcz—t> d

=1 (4.10)

The distribution of the sequence of random vectors, Qi’ must be
specified to complete the statistical description of r(t). If it is
assumed that ?i is a sequence of independent, identically distributed,
random vectors and that Qi is independent of {N(t), t>0}, then r(t) is a
filtered Poisson process. The independence of the parameter vectors,
Qi’ follows directly from the spatial Poisson assumption. The independ-
ence of {N(t},t>0} and 9, also seems reasonable for most cases of inter-
est.” In the remainder of this dissertation, it is assumed that a

filtered Poisson process is a satisfactory statistical model for

reverberation.

4.1.3 Characterization of the Random Parameter Vector

The random parameter vector, Qi’ has components (Bi,¢i,Ai,wDi,¢i).
The random phase, wi’ will be assumed to be uniformly distributed from 0
to 2m. A physical interpretation of this assumption is that the ranges

of the scatterers, modulc one wavelength, are uniform random variables.

% In very high scattering densities, the size of the individual scatterers is

inversely proporticnal to N(t} and A, the echo amplitude, and is not independent of

{¥(t),t>0}. The Poisson assumption is questionable in this case,
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From the uniform phase assumption, it follows that all the odd order

moments of the received process {r(t),t>0} are equal to zero.

The distribution of the angular location variables, © and ¢, is
a function of the spatial distribution of the scatterers. The probability

that an incremental volume, AV, at spherical coordinates (r,6,¢) contains

a point scatterer is

1]

P [scatter in AV] vs(r,e,¢)AV

\Js(r,e,dJ)rzsinededcb (4.11)

Therefore, the joint density function of the angular location (9,¢) con-

diticned on the range, r, 1is

v (1“, 6,¢)sin8
= (4.12)

£(6,¢;r) =
2 m
{ "dq;f /2, (r,8,$)sin0de
s
o] (8]
The denominator in (4.12) is a normalizing constant that insures that
the density function integrates to 1. In the special case of a vertical

pointing sonar and a spatial density that is a function of depth, the

density function is

us(d)sine

£(6,4;d) = —5

T /2
fo dof v (d)sin8de
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t
v (G

cose)sine

£(6,¢4:1) =

0 s5v2

/2
2 f v (c—t- cosf )sindo

(4.13)

Expressions for the density, f(8,¢,t), for a constant scattering density

and a scattering layer are given below.

Case 1):

constant density, vs(d] = Ao

£f(8,¢;t) =
Case 2):
scattering layer,
0 if d <d
o
v (d) =
AO if d > d0
i0
f(9,9;t) =
sin®
cos_l(fiz)
ct
o ] sinbdo
0
sin®

2d
o]
2m 1‘[?]

sinb
27

e
if 8 < cos” |2
ct

{2
if 8 > cos 12
ct

1

_1f2d
if 6 < cos |2

ct

ct

[
if 8 > cos 9

)

(4.14)

(4.15}
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The density function for 8 and ¢ can be used to obtain the
moments of the beam pattern weighting term, g2(6,¢), which appears in
the expression for r(t). The second and fourth moments for g2(6,¢) for
a circular piston transducer and a constant scattering density are

evaluated in Appendix B.

The random amplitude factor, A, is a function of the target
strength of the scatterer. The target strength depends on the size and
structure of the scatterer and the angle of acoustic illumination.
Because of the many physical factors that can affect A, it is difficult
to obtain a general analytical expression for fA(a). The target strength
of individual fish for various species and various target angles have
been measured by Love [24]. While these measurements point out some of
the sources of variability, they do not provide a means of obtaining an
expression for fA(a]. A technique for cobtaining fA(a) from the single

fish echoes is described in Chapter 5.

The Doppler shift density function is a function of the relative
motion of the scatterers and the acoustic source. The second order prop-
erties of the reverberation signal have been studied for several different

types of Doppler shift by Moose [6] and Swarts [25].
4.1.4 First Order Density Function

The probability density function of a sample from the scattered
signal, {r(t),t>0} can be written as an infinite series using (3.46).
If the transmitted signal is of duration T, the density function of a

sample of {r(t),t>0} at time t' is



t! K
Ay = i [loft'-TB(x)dx]
" k=0 k!

t'

oxp [- 2, L, (BOKIEGL /KD (4.16)

where f[rt,/k) is the density of T conditioned on the occurrence of k

scatterers contributing to r(t) at time t' and B(t) = v (t)/lo. The

received signal due to k scatterers can be written as

Q ifk=20

r(t') = (4.17)

~J(w et + tPi)]

K
iE_l B, Re [£(t'-1,)e if k>0

where Bj is a random amplitude term that includes the effects of target

strength, beam pattern and losses.® When the magnitude of the complex

envelope, f{t), is a square pulse, (4.17) can be written as

0 ifk =0
r(t'} =¢ k (4.18)
_Z: B, cos(u;t'+ ) ifk>0
i=1
The density function for k = 0 with respect to M(drt,) is
f(r,,/k = 0) =1 (4.19)

® Unless propagation losses are compensated for by a time-varying-gain amplifier,
the statistics of Bi will be a function of time. Since we are concerned with the

density at a particular time, t', the time dependence has not been indicated.



59

where M(drt,) is counting measure at r_, = 0, that is?’

tl

Sof(x /K = 0) M(dr,,) = £(r,,/k = 0) oo

If it is assumed that the Bi are independent, identically distributed

random variables, the characteristic function of r_, given k scatterers

t!

can be written as
by (/1) = [$;(0)]" (4.20)

t

where ¢1(u) is the characteristic function of an individual term in the

sum in (4.18). That is,
¢1(u) _ E[eju Bcos(wt-+w)] (4.21)

Using conditional expectations, (4.21) becomes

= juB cos (wt + ¥}
¢1(u) = EB[Ew/B(eJu costw )]

21
fo eJuB cos {wt +¢)d¢'] (4.22)

s

- EB[

7 The concept of probability measure is often avoided in engineering literature.
Counting measure can be avoided by using delta functions. In this case, we would
write f(rt,/k =0) = 6(rt,) and use Lebesgue measure. For convenience, the delta

function notation will be used in the remainder of this dissertation.
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The integral can be expressed as a Bessel function (c¢f. [26], Eq. 9.1.21)

and

$ (u) = Eg[J,(uB)] (4.23)

The distribution of the amplitude variable, B, must be specified to
evaluate the expectation in (4.23). There are two approaches that can
be used to obtain the distribution of B. One is to determine the den-
sity of B from its contributing factors: the beanm pattern term, g2(8,¢),
the target strength term, A, and the losses. Additional data must be
collected and analyzed to obtain a valid model for f(a}. The other
approach is to directly measure the distribution for B. Since f(b) is

a function of the spatial distribution and type of scatterer, the density,
f(b), should be experimentally determined each time a particular scat-
tering environment is investigated. Jobst [27] has made measurements of
the echc strength distribution and found that the distribution of his
data resembled an exponential distribution. The density for exponent-

jially distributed B is

cb

f(b) = ce” b >0 (4.24)

Since the exponential distribution leads to an analytically pleasing
expression for the first order demsity, it will be used for f(b) in the
remainder of this section. From (4.20), {4.23) and (4.24), it follows

that

gb

¢1(u) = ~£ ge Ja(ub)db = —_— (4.25)
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and that

k
g
(02 +u2)

by

(u/k) =
tl

k/2

The corresponding density functiomn is obtained by Fourier

(4.26),

S o “Jury,
£, /k) = 5= _/:md:rt'(u/k)e du
1 ® ck
== cosf(ur_,)du
T Yo (02+u2)k/2 t!

(4.26)

transforming

(4.27)

Evaluating the integral (cf. [26], Eq. 9.6.25), (4.27) can be written as

(4.28)

where Ku(xJ is the modified Bessel function of the second kind of order

v. The complete density fumnction for r

tl

amplitudes is

t!
£(r,,3h,) = exp [ AL, _BGoaxjecz,.)
t' k k-1
% 73
[- AOJE,_TB(x)dx] OK(k-l)/Z(Urt') T,
+ E: ) exp[a-k
k=1 k! /T (k/2) 2 °

for exponentially distributed

(4.29)

tl
L, _Bodx]
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The density function, f(rt,;lo) is plotted in Figure 4.2 for several
different Poisson intensities. The Gaussian density function is shown
for comparison. For high Poisson intensities the Gaussian density and

f(r )} appear almost identical. The difference between the Gaussian

t';lo

density and f(r ) is better illustrated by the semi-logarithmic plot

trito

in Figure 4.3. This figure shows that f(r Ao) has heavier tails than

£’
the Gaussian density. This heavy-tailed behavior of the first order
density function is present in all reverberation signals and is not
dependent on the assumed exponential amplitude distribution. This can

be shown by expanding the density in an Edgeworth series expansion (cf.

[6], Chapter 3).

In many acoustic signal processing systems, the signal is envelope
detected before it is sampled. The density function of the sampled
envelope can also be represented by the infinite series in (4.16). The
density function for the sampled envelope conditioned on the presence of
k terms in the sum is a special case of the random flight problem [28]
originally considered by Lord Rayleigh. If ft‘ is the sampled envelope

random variable, then

® k

£, /0 = F, [ 3Gy T

n J o (B3 x}dx (4.30)

where B, is the amplitude of the return from the ith scatterer. If it
is assumed that the B, are independent, identically distributed, expo-

nential random variables, the density in (4.30) becomes
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GAUSSIAN DENSITY
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Figure 4.3. Semi-logarithmic plot of reverberation first order

density functicn
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® ®  _gb k
f(rt,/k) =T, j; chrt,x)[fo ge Jo(bx)db] dx (4.31)
Evaluating the inner integral (cf. [29], Eq. 6.611.1}, (4.31} becomes

J (r

£(E, /0 = F “f m (4.32)

(0 +X)

The complete density function, f(rt,;lo), can be obtained using the above

expres.lon in (4.16).



CHAPTER S
SPATIAL DENSITY ESTIMATION

5. Introduction

The theory of Poisson intensity.estimation and a mathematical
model for volume scattering were developed in the previous two chapters.
These results are now used to determine the structure and performance of
active sonar systems that are capable of estimating the spatial density

of volume scatterers.

Density estimates using independent samples from a reverberation
process are considered in the first part of the chapter. The relative
performance of various estimation techniques is determined. The remainder
of the chapter is devoted to a study of some signal processing techniques
that are presently being used to estimate the scattering density of marine
organisms. Expressions are obtained for the expected value and the mean
squared error of the estimate obtained with echo integration and echo
counting. A.method for extracting the target strength distribution from
single scatterer echc amplitudes is discussed. The mean value of the
target strength is required to scale the integrator output and obtain an
absolute abundance estimate. The target strength distribution can also
be used by marine biologists to determine the size distribution of

organisms in the scattering volume.



67

5.1 Sampled Signal Estimates

The problem of estimating the intensity of a filtered Poisson
process using independent samples from the process was discussed in
Section 3.4. These results will now be applied to the reverberation
model developed in Chapter 4. The performance of the various sampled

signal estimates will be compared for the following model:

i) returned echoes are rectangular pulses with exponentially distri-

buted amplitudes,

N(t)
r(t) = EBi[u(t-Ti)-u(t—Ti-Tp)]cos(wt+l,(Ji)
i=1
where Py(b) = oe”P b>0

ii) constant Poisson intensity, v(t) = Ao

iii) neo noise in the received signal

This is the basic'model used to study the first order density function of
the reverberation signal in Section 4.1.4. The assumption of a constant
Poisson intensity is not valid for most cases of interest. However, this
assumption greatly simplifies the analysis and the results obtained

illustrate the basic properties of the various estimation techniques,

The performance criterion used in this section is the normalized

~

mean squared error in the estimate of the density factor, AO

" 2
&2 _ E[O5 27

2 2
10 10

When the estimate is unbiased, e2 = Var[lo].
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5.1.1 Sampled Echo Integrator

The block diagram of the sampled echo integrator is shown in

Figure 5.1. The envelope detector removes the carrier from the signal,

r(t) |ENVELOPE R;i | SQUARING n
>{oeTeECTOR [~ > ] ClRCUIT [ i; s
SAMPLE AT
RATE =1/ Tp
Figure 5.1. Sampled echo integrator
The mean and variance of IS are
& 2
E[1] = EE[Ri 1 (5.1)
i=]
n n n 2
Var[I_] = > E[RizR.Z] -{E E[Riz]} (5.2)
i=1 j=1 ) i=1

From the moment expressions

n 2
E[1.] = -21 A E[B T /2
1=

and

Var[Is]

2
AOnTp/G

n
2: Var {Riz]
i=1

_ 4 2.2, 4
= 6nAoTp/c +2n Ao Tp /o

in (3.39) and (3.47) it follows that

(5.3)

(5.4)
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If the parameter ¢ is known, the sampled integrator output, Is’ can

be scaled to provide an unbiased estimate of Ao'

I
A = S > (5.5)
T /o
n p/

Since the estimate is unbiased, the variance and mean squared error are

equivalent and

EE.= Var[Is] __6 .2 5.6)
2 2 nAT n ’
Ao CE[T.D o'p

5.1.2 Sampled Echo Counter

A block diagram of the sampled echo counter is shown in Figure 5.2.

rt) [ENVELOPE]  « R [0 Rieo h .
. = | ) C
> IDETECTOR[ > Yi [1 R;=0 "‘%Yl
SAMPLE AT T
RATE = 1/T, Vintp

Figure 5.2, Sampled echo counter

The structure shown in Figure 5.2 is basically the same as the low density
estimator described in Section 3.4.1. The principal shortcoming of the
sampled echo counter is its imability to provide an accurate estimate in
high scattering densities. When two or more echoes occur in the same
sampling interval, Tp’ only a single echo is counted. Expressions for

the mean and variance of the estimated density, 10, are given by (3.37)

and (3.38). For the model in Section 5.1,
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-hoT

- 0
E[\ ] = E_E%r__li (5.7)
c P
“AgTp | -2A,T
var[A ] = e °F = P (5.8)

nT
P

Unlike the sampled echo integrator, the sampled echo counter has a bias,

b, given by,

o
]

A,-E[A ]

=2,T

_ l-¢ "O°P

= Ao S S (5.9)
P

The normalized mean squared error of the estimated density is

2 2

e, . b +Var[kc]

A2 A2

C v]
1 ~AoTp ’ e~ *oTp -2 T

- 1- + & + 2 "2 (1-¢"P) (5.10)
T AT 2
P op n(AOTP)

5.1.3 Bound on Sampled Estimates

An equation for the maximum likelihood estimate of ko in terms of
independent samples RI’RZ""’Rn is given in (3.53). The corresponding
lower bound on the variance of the estimate is given in (3.55). Assuming
the samples, r(tl),r(tzj,...,r(ts), are taken from the process {r(t),t>0}

defined in Section 5.1, the maximum likelihood estimate is given by

oo (AOT )k
n{ X =5 f(r(t)/K)
& G- i
T+ pIR G —— =0 (5.11)
1) 3T gireyrm
~ k! A
k=0 =A
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where

f(r/k=0) (1)

]

s (k+1)/2_(k-1)/2

f(r/k) k#0 (5.12)

and the bound on the normalized mean squared error is

e2 Var[ko] 1

| v

2. d ) 2,-
- 102 > {nxo E[axg[ljlf(r(ti),lo)] }

H
=]
-3
O
o]
'3
|
—3
o]
+
=
]
[
—
W
[
1t
et

k
- )\oT d (AOT )
e 0P Y —F— f(r/K)dr (5.13)
k=0
One measure of the performance of an estimate of Ao is to compare
its mean squared error with the mean squared error of the estimate obtained

when all the echoes are resolvable. If k echoes are received in the time

interval (o,nTp), the optimum estimate of lo from (3.5) is

5 o=k (5.14)

and the normalized mean squared error is

e2 . Var[ko] 1
0 0 © P

(5.15)
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The normalized mean squared error expressions in (5.6}, (5.10),
(5.13) and (5.15) are plotted in Figure 5.3 as a function of the expected
number of echoes per sample, lOTp. The sample echo counter is the
optimum processor in low scattering densities (AOT?<.2 for the model
used in obtaining Figure 5.3). On the other hand, in high densities
(AOTP>1O), the sampled echo integrator is the best of all the possible
processors that use independent samples from the received signal. The
choice of the signal processor is not so simple in the medium density
range [.2>AOTP>10). In many cases, the choice of the processor for the
medium density range will depend upon the required degree of accuracy.
The normalized mean squared error of the sampled echo integrator is
inversely proportional to the number of samples, n, Therefore, if an
unlimited number of samples are available, the sample echo integrator
could be used to estimate lo to any accuracy. The sample echo counter
does not have this desirable property. For large n, the mean squared
error of the counter is determined by the bias term (5.9) which does not
decrease with n. If only a limited number of samples are available and
if neither the sampled echo integrator nor counter provides the required
degree of accuracy in the estimate of AO, then a more complex signal
processor must be used. One such processor is the recursive estimator

that will be discussed in the next section.
5.1.4 Recursive Estimation eof Ao

A method for recursively estimating the intensity of a filtered

Poisson process was discussed in Section 3.4.3. Let r(tn] be the nth

sample from the process {r(t),t>0} defined in Section 5.1 and let An
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be the estimate of Ao at time tn. Then, the form of the recursive

algorithm is

d
Ay = At A, [ 1 f(r(tn),x)lmn] (5.16)
where
o (AT )"
£(r;d) = 3 —p— £(/K)

k=0

1
a =

n 2
d
nE[dT 1n f(l‘;l)]l_A ) ]

and where f£{r/k} is defined in (5.12).

The sampled echo integrator can also be written in recursive form

using (3.69).

re(t.)

_ 1 n
Aper = A Y E'( g 2 ~ M ) (5.173

where

Urz = Var[rz(ti)] .

It would be very difficult, if not impossible, to analytically
determine the finite sample performance of the algorithm in (5.16). The
performance can best be evaluated by means of a Monte Carlo simulation.
The two algorithms in (5.16) and (5.17) were simulated for a sequence of
100 samples and a Poisson intensity of 2. The mean squared error in the
estimates was obtained by averaging the errors for a hundred different
sequences. The initial estimate, Al, was determined from the first sample

as follows.
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A, = o (5.18)

The Tesults of the simulation are shown in Figure 5.4. The 95% confidence
interval for the estimated mean squared error for the two algorithms is
shown at various points along the curves. The estimated error of the
recursive algorithm is less than the Cramér Rao bound on the variance.
This is due to the inaccuracy in the estimate obtained from the Monte

Carlo simulation which has used a finite number of sequences.

It was mentioﬁed in Section 3.4.3 that stochastic approximation
algorithms can be extended to independent samples from a nonstationary
process. The applicability of the recursive estimation algorithm to
nonstationary processes is essential in the problem of acoustic estimation
of scattering abundance. Recall from the model developed in Chapter 4
that the acoustic reverberation process is nonstationary because of the

increase in the cross sectional area of the acoustic beam with time.
5.2 Echo Integration

The echo integrator! is a continuous time version of the sampled
echo integrator described in Section 5.1.1. A block diagram of the system

to be considered is shown in Figure 5.5.

! The performance of the echo integrator has been discussed in two papers by
the present author [10], [11). The approach in this section is more general than the
previous analyses. However, the referenced papers have a more detailed discussion of

the effects of the various system parameters on the perfermance of the integrator.
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Figure 5.4. Monte Carlo simulation of estimation

algorithms in Equations (5.16) and (5.17)
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Figure 5.5. Echo integrator

The T.V.G. (time-varying-gain) amplifier equalizes the signals received
from scatterers at different depths. The range gate controls the depth

interval over which the scattering density is estimated.

5.2.1 Single Pulse Analysis

The analysis begins with a special problem: the integration of
returns from a single transmitted acoustic pulse. From (4.5), the re-

ceived signal at time t is

N(t) 2 -¢ ct iq }
r(t) = 3 A (0;,0;) S G(e)Re[£(t-1 )¢l CetUp) Y) (5 1)
i=1 (ct/2)

where G(t) is the time varying gain function of the T.V.G. amplifier. The
other parameters have been defined in Chapter 4. The output of the

integrator for a single transmitted pulse can be represented by
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t2 2
I=/f |r(t)|"de (5.20)
t

The performance of the echo integrator can be determined from the

expressions for E; and VarI2 which follow from

t

2
B, = E[1] = f B[]z () ]?]da (5.21)
51
5
Var, = Var(1] = [ [ {E[|r(@)|*/x®)}?]
5t Y
- E[|r() | 21E[ ] * (8) | *1}dade (5.22)

by interchanging the order of integration and expectation. The moments
of |r(t]|2 that appear in (5.21) and (5.22) which are evaluated in

Appendix C are

o
E[Ir(a)[z] = f v(r)E{|E(a,r,g)]2}dr (5.23)
t
1

and

2 The integration time is usually long compared to the pulse length. Under
these conditions, the total integrator output can be approximated by a sum of sta-
tistically independent components and is approximately Gaussian distributed because
of the central limit theorem. A Gaussian random variable is completely characterized
by its mean and variance. Therefore, EI and VarI contain all the information nec-

essary to statistically characterize the estimate obtained using the echo integrator.
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E[|r(@|%]x® | 41-E[|rced | 21EL | x(BY | °]

Cov[|r(u)l2,|T(B)|2]

min (a,B) .
B HCR IR RN
t

1

2

min(a,B) .
2{}[ v(T)E[zc(a,t,Q)zc(B,T,Q)]dT}
t1

+

2

in(a,8 .
z({{mtcT)E[%c(a.r,@)zs(s.r,g)]dr}
1

+

2

in(a,B)
2{ [VDEE (01,007, (8,7, a7
Y

+

2

min(a,B .
2{~f u(r)E[zS(a,r,g)zs(s,r,g)]dr} (5.24)
%

+

where

(t,7,0) = Z_(t,7,8) - jZ (t,7,0)

and

2 -a.ct . ]
Z_(t,7,0) = Rel:ég (B,¢]e2 O Gty £(t-tye) (ot
© (ct/2) 1
2 -g.ct . “
3_(t,1,0) = Im[:éﬁ—ﬁa’@Jez ° G(e) £(e-1)ed DTV (5.25)
s ~ (ct/2) _
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When the envelope of the transmitted signal, f(t), is real and the density
function of the Doppler shift variable wp, is symmetric about zero, the

complex envelope, E(t,T,@) is real and (5.23) and (5.24) simplify to

2 o
Ellr(@]%] = [ v(DE[ZZe,T,0)]dr (5.26)
t
in(a,8) 2
CWHrmHﬂerZJ=f%ﬁuﬂzuxrmz(&Tendw
t]
min(a, 8) 2
N z{f \)(T)E[Ec(a,T,Q)EC(B,T,Q)]dT} (5.27)
t
1

For simplicity, (5.26) and (5.27) are used to obtain expressions for EI
and VarI. The derivation for a complex f(t) and asymmetric Doppler dens-
tiy function is rather involved because of the number of terms that must

be retained. From {5.25), (5.26) and (5.27) and the assumed uniform

distribution of the random phase variable y, it follows that

-Zaoct

o
E[]r(w)|?] = E[A%* (0, )]e 8@ [ ymefe-ndt  (5.28)
2(co/2)* t
4 8 2 2 -20..c (a+B)
Cov[|z() |?)r@) |2 - ElA 2 (8,0)]G (G (Ble 0
4(caB/4)
min(c,B)
E[1+cos{2mD(u.—B)}]f V(1) £2(a-T) £2 (B-T) dt
t
1
-0,C (a+B)
* %% E[A%g* (8, 9) cos{up (a-g) }] ELICEE)C >
(608/4)
min(a,B) 2
f\)(T)f(a—T)f(B—‘r)dT (5.29)

t1
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The mean and variance of the integrator output can be calculated
using (5.28) and (5.29) in (5.21) and (5.22). 1In the general case, the
expressions for EI and Var; must be numerically evaluated. Closed form

expressions can be obtained by making the following assumptions:

i) rectangular pulse, f(t) = u(t) - u{t—Tp) where u(t)
is the unit step function and Tp is the pulse length.
ii} no Doppler shift, Wy =0
iii t,-t.>>T and t >>T
11) 271 P 1 'p A 1Tc3t2
iv) uniform spatial density, v(t) = ° 3

v) Tp>>2w/w

vi) attenuation losses are negligible (uo=0) and G(t)=tg°.

The expressions for Var; and E; with these assumptions are®

2 4 2gp-1_, 2gq-1
B0, 0 KT ¢, t,“807]

I 2(2g -1 (5.30)
E[A4g8(e,¢)]T Zk[t2430'5_t14go“5]
VarI = P
4(430‘5)
(E[A2g4(e,¢)])Zszp3[t24go-3_tl4go-3]
! (5.31)

6(4g,-3)

? The steps leading to these results are contained in [10]. The previous

analysis assumes an ideal elliptical transducer beam pattern.
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where

it is reasonable to assume that the target strength random vari-
able, Az, and the beam pattern random variable g(9,9) are uncorrelated.
The evaluation of the moments of g(0,¢) is considered in Appendix B.
The density function and moments of A2 can be estimated by the method

discussed in Section 5.4. The integrator output can be scaled to pro-

duce an estimate of Ao after E[Az] and E[g4(8,¢]] have been determined.

1
5.32)
0 280-1 . 2gg-1 (
s 5 0 )

BIA%JELE" (8,901, (c/2)

o
Il

2g5-1

The relative size of the mean, EI’ and the variance, VarI, can
be determined by normalizing the variance with E;Z. From (5.30)}, (5.31)

and the assumption that A and g(8,¢) are uncorrelated, it follows that

Var, E[A4]E[g8(8,¢)](230-1)2[1-(t1/t2)480-5]
E12 (E[AZ]E[g4(8.¢)])2(4g0-5)kt23[1_(tl/t2)2go-1]2

2 4g -3
2(2g -1)2T [1-(t,/t.) %8073
o P 1 2 (5.33)

+

3(4g,-3)t,[1-(t /1) ?807 1)
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5.2.2 Multiple Pulse Analysis

The results of the previous section can be generalized to include
integration of returns from multiple soundings. Define IT as the inte-

grator output after the integration of the returns from Np pulses. Then
I.=1, +1I.+ ...+ 1 (5.34)
where Ij is the integrator output for the jth pulse. If it is assumed

that the scattering density is constant for all Np pulses and that each

pulse is range gated to the same interval, then

E[1;] = N E; (5.35)
and
Np Np
Var(I,] = NpVarI 2 Cov[Ii,Ij] (5.36)
1=1 j=1
i#j

The covariance term in (5.36) can be written in terms of ]ri(a)l and

]rj(B)], the envelopes of the returned signal for the ith and jth pulses.

t2 t2 2 )
CovlLy, 1] = tf1 tfl SIENGIRENOIE
_ E[|ri(aJ|2]E[|rj(BJ|2]}dad8 (5.37)

If a new volume of water is insonified with each acoustic pulse, the

returned signals, ri(a) and rj(B) are independent and
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Cov[Ii,Ij] =0
and

Var[IT] = NpVarI (5.38)

To evaluate (5.36} for overlapping volumes of water, the re-

turned signals can be split into two parts as follows,

. (o)

ryla) = r (@) + T

r5(B) = xo;(B) * . (8) (5.39)

where roi(a) and roj[B) are produced by scatterers in overlapping
volumes of water. Since rni(a) and rnj(B) are produced by returns
from nonoverlapping volumes, they are independent and do not contrib-
ute to Cov[Ii,Ij]. Using the assumed smatial Poisson distribution for
the scatterers, it follows that roi(a) and roj(B) are filtered Poisson

processes with intensity function

AocAi.(t)
where Aij(t) is the cross sectional area of the overlapping volume for
the ith and jth pulse at time t. An expression for Aij(t) in terms of
the physical parameters of the system for an ideal elliptical beam is

derived in Appendix D.

Assume that the same scatterers are present in any given volume

over a period of several transmission pulses. The positions of the
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scatterers relative to the beam pattern can be expected to change and
these changes are assumed to cause the phases of the signals for different
pulses to be uncorrelated. The expression for Cov[Ii,Ij] is evaluated by
means similar to those used in the single pulse analysis. The resulting

expression for the six assumptions used in the single pulse analysis is

t2 %y g[a.° s g-4(9,¢38j4(9,¢)]

Cov[I f f = )

LSS |
where
min (o, B)y ¢
_ 2o -
Tjj(B, T)) = 7~ A5(D
t
! (5.41)

{u[a—r]-u(a-T-Tp)}{u(B—T]—u(B—T—Tp)}dr

Further assumptions must be made to cobtain a closed form expression for
Var[IT]. These assumptions and the resulting expression are contained in
a paper by Moose and Ehremberg [10]. This paper also considers the effect

of the various system parameters on the performance of the integrator.
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5.2.3 Effect of Noise on the Integrator

The analysis in the previous two sections has assumed that only
the signal reflected by the scatterers is present at the output of the

transducer. In practice, the tramsducer output will also contain noise.

Define n(t) as the noise process at the output of the T.V.G.
amplifier. If n(t) and r(t) are assumed to be narrowband processes with
real envelopes, the integrator output for a single acoustic pulse can be
written as

t2

[r(t)+n(t)]dt
t

-
1]

t2
.[ [rz(t)+n2(t)+2n(t)r(t)]dt (5.42)
t]

It

The quantities of interest are again the mean and variance of I. As-

suming that r(t) and n(t) are zero mean and statistically independent,

it follows that

12
E, = [ E? () [+B % (1) 1hat (5.43)
t
i

and
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tr &

var, = [ [ (Covin? (0,02 (8)1+ Covlr?(a),r2(8)] (5.44)

t. t
1 "1

+ 4E[r(a)}r(B) JE[n(a)n(B) }dad’

The mean and covariance of the squared reverberation signal, rz(t) are
defined in (5.30) and (5.31). The joint second moment of r(t) can be

obtained from (A.12) and (5.25},

E(A%g" (8,4)16() G (B) cosuy (o-8)

E[r(w)r(8)] = 5
¢ ~Goc{a+8)  min(a,B)
_"_____Tr'-[ v(1) f(a-1) £(B-1)dT (5.45)
(caB/4) ty

The statistical properties of the noise process must be specified
to evaluate the moments of n(t) that appear in (5.43) and (5.44). The
ambient noise in a sonar system usually consists of radiated signals from
several independent noise sources [30]. It follows from central limit
theorem arguments that the amplitude of the ambient noise is Gaussian
distributed. The noise at the output of the bandpass filter, no(t), will
be assumed to be stationary with a flat spectral demsity within the band-
pass. The assumed spectral density of no(t) is shown in Figure 5.6. The

autocorrelation of no(t) is obtained by inverse Fourier transforming

5, (£),
o}

i W
sin2mT (5.46)

[~
27T, .
R (1) = s_ (f)e’ = 2N W
5 (0 f_m n (0)e°7777af = 2N Weoszme t Sk

4} 0
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Figure 5.6. Filtered noise spectral density

For a pulse of length Tp’ the filter bandwidth and the pulse length are

approximately related by

1
W T (5.47)
p
Therefore,
2n sin2mt/T
v -2
Rno('l") £ Tp COSZTTfoT W;—P- (5.48)

The noise process at the input of the integrator, nz(t), is

related to no(t] by
n(t) = Gz(t)noz(t) (5.49)

Therefore, the moments of nz(t) in (5.43) and (5.44) are

Eln(©)] = G2 (DE[n_2(t)]
2 2 2 2 2 2
Cov[n™(a)n"(B)] = G“(w)6 (B)Covin “(«),n_~(8)]
E{n()n(B)] = G(x)G(RIR, (a,R) (5.50)

o
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The first and second moments of a square law detected Gaussian process

are (cf. [1], pp. 253-255)

E[noz(t]] = R_ (0) (5.51)
QO

Cov[n *(o),n *(8)] = 2Rn02 (2,8) (5.52)

From (5.48), (5.50) through (5.52), it follows that

E[nz(t)] = Gz(t)ZNO/T (5.53)
P
2 2 5 2 N0 2 5 sin2nt/T 2
l:()\'ir[n (C(.),Il (B)] =G (G.)G (B)S T"‘" COoS 21Tfo'f -_Z_TT—T/—T_—R (554)
p P

The following expressions for the mean and variance of the integrator
output for a reverberation signal in noise are obtained from (5.30},
(5.31), (5.43), (5.44), (5.53), (5.54), the six assumptions in Section

5.2.1 and the assumption that A and g(6,¢) are uncorrelated.

_ E[Az]E[g4(e,¢)]kTP[tZZgO'l_tIZgo-I]
T 2(2g,-1)

E

280+l _2gp+l
2N (t, -t )

T gD (5.55)
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E[A4]E[g8(9,¢)]szk[t24go_5-tl4go'5]

Ver; = (g, 5

(EIA"1E g (8,0) ) iPr 3¢, 98073 #8073]

6(480"3)

4g0+1_t 4go+l)

NYy2({t
o 2 i
+81T{§} 4go+l (5.56)

It was shown in Section 5.2.1 that in the absence of noise, the
integrator output could be scaled to produce an unbiased estimate of lo.
This is no longer the case when the received signal contains ambient

noise. An expression for the bias is abtained using (5.32) and (5.55)

.Eﬁo—k]

o
1

o

2N, (1, B0t Zg°+I)(Zg
(5.57)

2 (6,280 ¢ 28T 0 T E g (G,¢)](c/233

The normalized mean squared error in the estimated density, efi is

; VarDi] s+ (B, - A 107

I 12
0

e

EA*1E1® (6,037 (2g,-1) [1 (t,/t,) 805

 EATIER 0,001 tg-S)ke 2 [1- (¢ /e P87
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2(28,-1)71 [1- (2 /e ) 807°) b ?

-+
2go-l]2 A02

+
3(4go-3)t, [1- (/1)

2 2, 3 4ga*l
321TNo {2go-1) t, [1-(t1/t2) ]

+*

T3 (5.58)

1 4 (4g,+1) EIATTELE (0,00 D)7 [1- (¢, /2 ) B0 7]

where bI is defined in (5.57). The normalized variance of the integra-
tor output in the absence of noise could be reduced by shortening the
length, Tp {cf. Equation (5.33)). However, shortening the pulse length
results in a wider bandwidth and increases the contribution of the

ambient noise to the mean squared error (cf. Equation (5.58}).

5.3 Echo Counting

The echo counter is the continuous time version of the sampled
echo counter described in Section 5.1.2. A block diagram of the echo
counter is shown in Figure 5.7. The threshold device eliminates low

level noise and amplitude variations from the signal.

5.3.1 8ingle Pulse Analysis

If the transmitted signal is a gated sine wave of duration Tp. the

signal out of the T.V.G. amplifier can be written as

N(t)
e(t) = Z: Bi[u(t—Ti]—u(t-Ti-Tp)]cos(mt+wi) (5.59)
i=1
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Figure 5.7. Echo counter

where Bi is the amplitude of the ith echo, N(t) is a nonhomogeneous
counting process with intensity v(t) and T, is the time at which the ith

echo appears at the counter. The output of the threshold device, eo(t),

is

1 le)lzT

e, (t) (5.60)
0 lecty|<T

The process, e(t), can be split into two parts

e(t) = e, (t)re,(t) (5.61)

where
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Na(t)

eA(t) = j{;l BAJ' [u(t—TAj)-u(t-'rAj-Tp)]cos(wt+wAj)

Ng(t)
eB(t] = Z BBR,[u(t-TBR)-u(t-TBz_Tp)]cos(wtﬂpBﬂ.)

f=1
such that eA(t) contains only echoes whose amplitudes are above the
threshold, T, and eB(t) contains echoes whose amplitudes are below T.
NA(t) and NB(t) are nonhomogeneous Poisson counting processes with in-

tensities \JA(t) and \)B(t) defined by

vA(t) v(t)}P{B2T]

vB(t) v(t)P[B<T] (5.62)

It will be assumed that the signal at the output of the threshold device

is due solely to e, (t) Y

The¢ number of echoes registered by the counter for a single

acoustic pulse is

Na(t)
C(t,) = lei('r iot) (5.63)
1=

* This assumption is an oversimplification of the effect of the envelope
~ detector and the threshold device. In a previous analysis [11], the problem of the
threshold was avoided by assuming an ideal transducer beam pattern with constant
intensity within the beam. All the scatterers insonified by the ideal beam were

assumed to have echo levels greater than the threshold.
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where

1 if counter unlocked at TAi
X (Tys08) =

0 if counter locked at TAi

The counter will be locked at TAi if

Tp=T, <T
Al "Ai-1 p (5.64)

The output of the counter, C(tzJ, is a filtered Poisson process
and its mean and variance can be determined from the characteristic fumc-
tion derived in Theorem (2.7). The resulting expressions for E[C(tz)]

and Var[C(tz)] are (cf. [17], p. 156)

t
E[C(t,)] = ftlz\)A{T)E[x(T,t)]dT

t
Var{C(t,)] = J sz(TJE[xz(T,t]]dT (5.65)
1

The first and second moments of x{T,t)} are easily evaluated

Elx(t,t)] = E[xz(r,t)]

1 P [counter unlocked at time T]

T
exp [ -fT_T v, (x)dx]
p

13}

exp [ -v, (1) Tp] (5.66)
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The last approximation assumes UA(T] is nearly constant over a pulse length,

Tp. it follows that

t - A(T)T

E[C(t,)] = Var[C = [ 2 P
[C(t)] = Var[C(t))] j;l vy(De dt (5.67)

When the scatterers are uniformly distributed in the insonified volume,

_ 2
vA(T) = AOKCT

where
csﬂ me
KC =54 f(b)db {(5.68)
and
t -Tzl K.T
- _ 2 2 oC'p
E[C(t,)] = Var[C(t,)] = XOKCJ£1 e dt (5.69)
In low spatial densities,
2
-t°A KT
o o Cp =~ 1

and the counter output is proportional to the density factor, lo' There-

fore, using the low density assumption, the estimate of ho is

K C(tzJ
= {(5.70})
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The bias in the estimate is

b = E[A -4, = A 3 -1 (5.71)

5

The normalized mean squared error of the estimate AO is

~TeA KT AT

2 t
¢t Par 94 212e o'C Pas
eC 1
.-—.—2 = 2 3 3 - 1 + 3 3 2
Ro AO ty -t xcxc(tz -t )

t

2.2

2 2 A 3 e
bC +Var[l0] ) ‘41

(5.72)

5.3.2 Multiple Pulse Analysis

The total count registered by the counter, CT’ after Np acoustic

pulses is

CT = C1+ C2+ ves +CNp (5.7%)

where C. is the number of echoes counted on the jth acoustic pulse. The

estimate of lo assuming a constant spatial density for all NP pulses is

Cp

- T3 (5.74)
N Koty -t,7)/3

A
0

Processing the returns from several acoustic pulses does not reduce the
bias obtained with the echo counter. The normalized mean squared error

after NP pulses is
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e b2c + Var[?\o] I:vzC 3 2 Nf Nf
e e = T . J.=1E[Cicj] - E[Ci]E[Cj]

3 "
A, A A, AN K (8,728, | i1

2 —|2
C2 5 {Np Var[C(tz)]

3 3
o LroNpKelt -ty )_,

n
+

Ny N
EP Y, Cov[Ci,C.]} (5.75)
i1 j=1 ]

1#3

+

where bC and Var[C(tz)] are defined in {5.71) and (5.69).

If a different volume of water is sampled with each pulse, Cov[Ci,

C.]=0 and
J

2 2 2

e
Lo o M 3 var[e(t)] (5.76)
AN I I PPN I 2
0 0 Pl ™

=

=

Evaluation of the covariance term in (5.75) for overlapping sampled volumes
is very difficult unless some further simplifying assumptions are made. An
ideal beam pattern with constant intensity within the beam was assumed in

a previous analysis [11]. The interested reader is referred to Reference

11 for the overlapping volume analysis with this assumption.
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The relative performance of the echo integrator and echo counter

is illustrated by the following example.

Example (5.1):
Physical model:

i)

constant spatial intensity, A

o
ii) target strength variable, A, is Rayleigh distributed
2 2
f(a)=—a-—ea/2a a>0
A 2
o
iii) negligible absorption, a,= 0
iv) no ambient noise
v) sound velocity in water, c= 1500 m/sec

System parameters:

i} surveyed depth interval = 10-40 meters
ii) T.V.G. gain factor, g, < 2
iii) pulse length, Tp = 1 msec
iv) number of pulses, Np = 400 (no overlap)
v} <circular piston transducer with d/A=6 (3 dB beamwidth
of 11.5°
vi) counter set to detect all scatterers in the region

where g2(9,¢)2>—15 dB,

The beanm pattern moment ratio which is obtained from the curves in Figure

Bl is

E{g (6,01
Gl e.0n?

= 220
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and the target strength moment ratio is

4

—B[—Z-]_f_- 2
(E[A™])
The probability of counting a single target is obtained by integrating

the beam pattern density function derived in Appendix B,

1
fmf(b)db - [ f£5()dg = .018
T .001

The normalized mean squared errors for the echo integrator and echo

counter for the above set of conditions is plotted as a function of Ao

in Figure 5.8. The normalized mean squared errors in Figure 5.8 have the
same characteristics as the corresponding sampled process error curves
shown in Figure 5.3. At low densities, the mean squared error of the
integrator and counter decreases as l/lo. for these densities, the indi-
vidual echoes do not in general overlap and the principal source of vari-
ance is the variability of the scattering density about its mean value.
In this region, the echo counter has a lower error since it is not

affected by variations in the echo level.

5.3.3 Bffect of Noise on the Counter

The echo counter like the echo integrator is adversely affected by
ambient noise. An extraneous count will be recorded when the envelope of
the noise process exceeds the threshold level, T. In this section, ex-
pressions will be derived for the mean and variance of the counter output

when the input to the transducer is Gaussian distributed ambient noise.
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Assume that the threshold is set such that the mean time between
counts cue fo the ambient noise is much greater than the correlation
time of the noise process. In this case, the number of times the noise
process exceeds the threshold can be approximated by a Poisson process

with intensity v_(t) givén by®

2
R "(t,t -T"/2R_(t,t
T fl “;T TR () 5.77)

vy (8) = R_(t,)

where

d2
1] _
Rn (t,t) = ~—§-Rn(t,t+t)
dt T=10

and Rn(t,t+T] is the autocorrelation function of the envelope of the noise
process at the input to the linear detector. In order to evaluate the
noise envelope correlation function, assume that the noise at the output
of the bandpass filter has the spectrum shown in Figure 5.6. The time
varying gain amplifier (T.V.G.) changes the height of the noise spectrum as
a function of time. If the T.V.G. gain function, G(t), is slowly varying
relative to the correlation time of the noise, the height of the spectral

density at time t is Gz(t)N0 and the autocorrelation function is

® The expression for v (t) is derived by Helstrom (cf. [31] pp. 253-257).
Helstrom's analysis is used to obtain an expression for the probability of error

in a radar system, a problem closely related to the problem treated in this section.
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R (£,t+7) = G2 (EN _/wejz'“ﬁdf (5.78)
0w
It follows that
2
Rn(t,t) = 2G°(t)N W (5.79)
8]
-8G2 [t)NOW3ﬂ2
R "(t,t) = 3 (5.80)

The following expression for vn(t) is obtained from (5.77), (5.79)}, (5.80)

and the approximation that W =1/1b.

T2T

P
2 2
3N0G (t)Tp

v,(t) =

The intensity, vn(t), is plotted in Figure 5.9 as a function of the

threshold to noise ration, R, defined as

2 2 TZT

T T
- . _ P (5.82)
Var[n(t} ] ZNOWGZ(t) 2NDGZ(t)

Recall that the Poisson assumption was based on the condition that the
mean time between counts is much greater than the correlation time of the

process. In terms of vn[t) and Tp, this condition is equivalent to

>> T (5.83)
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1 Tp= 2 ms
. I Tp= 8ms
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Figure 5.9. Intensity of noise induced counts
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For R>9 dB and (lfvn(t)J> 10 TP, the Poisson model is a good approxi-

mation to the distribution of the noise produced counts.

Expressions for the mean and variance of the number of counts,
Cn(tz] produced by the noise in a time interval (tl’tz) follow directly
from the properties of a nonhomogeneous Poisson process (cf. (2.12) and
(2.13)),
s

Elc, (t,)] = Var[C,(t,)] = ’!1 v_(t)dt (5.84)

where Un(t) is defined in (5.81). The density estimate for the counter
is obtained by scaling the number of recorded counts. If the scale factor
for uniformly distributed scatterers is used, the noise induced bias in
the estimated density is

Cn(tzj

b = 27 (5. 85)

3.3
Kc(t2 -tl }3

where K: is defined in (5.68). The ratio of noise induced biases for the
integrator and the counter is a measure of the relative effect of the
ambient noise on the two estimation techniques. The ratio, bn/bI, which
is obtained from (5.57), (5.81) and (5.85) is

2

7
—D
4
b SYAIT 3/25[A 1EL2? 0,4)] f £ 2, 4ot dt
= = (5. 86)
1

N ¥ 221 ) ff(b)db
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Equation (5.86) has been evaluated for the assumed set of operating

conditions in Example (5.2).

Example (5.2):
Parameters:

i) surveyed depth interval = 10-40 meters
ii) circular transducer with d/A =6
iii) target strength term, A, is a constant

iv) sound velocity, ¢ = 1500 m/sec

The definition of the threshold to noise ratio, R, will be modified as

follows to account for the changing noise spectral density with time.

2 T2T

T P
- _ (5.87)
Var{n{(t)] 2N0E[G2(t)]

where E[Gz(t)] is the average gain of the T.V.G. for the surveyed depth
interval. The fourth moment of the beam pattern term, E[g4(8,¢)] is ob-
tained from Figure Bl. Since the target strength variable, A, is assumed
to be constant, the integral of the echo level density function, f(b),
can be expressed in terms of the integral of the beam pattern density

function, fC(g)

1

{f(b)dw | f@de

where fG(gJ has been derived in Appendix B. A plot of the bias ratio,
bn/bI, as a function of threshold to noise ratio and threshold setting

relative to A is shown in Figure 5.10.
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5.10.

Comparison of bias errors in integrator and counter
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5.4 Target Strength Density Function Estimation

A technique for making an in situ estimate of the density function
of the target strength variable, Az, is discussed in this section. The
density function can be used to evaluate the moments of A2 which appear
in the expression for the mean and variance of the integrator output.

The target strength density function can also be used to estimate the
scatterer size distribution within the surveyed population. Another
method for obtaining the target strength distribution has been proposed
by Craig and Forbes [8]. Their technique is physically motivated and
implicitly assumes that the scatterers are uniformly distributed in
space. The method described in this section is statistically motivated

and can be applied to any spatial distribution.

The estimate of the target strength density function is obtained
in two steps. The first step estimates a portion of the demsity function
of the integrated echo level, A2g4(6,¢). The partial integrated echo
level density function is then used to evaluate the density of Az. A
block diagram of the system used to obtain the single scatterer inte-
grated echo level, 1., is shown in Figure 5.11. The time varying gain
function of the T.V.G. amplifier is adjusted to cancel all propagation
losses. The threshold device represents the inability of the single
target recognition circuit to distinguish signals whose integrated echo
level, A2g4(9,¢), is smaller than a certain level, T. If all the single

echoes could be distinguished, it would be possible to estimate the

moments of A2g4(6,¢) directly. However, a large percentage of the total
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number of single echoes are from scatterers located in the low gain

portion of the beam pattern and fall below the threshold.

The single target recognition circuit is the most difficult
portion of the system to implement. Two possible circuits are discussed

in Appendix A of reference [32].

In order to simplify notation, define the random variables G and

Ao as follows

g0,

[}
1]

A = A% (5.88)
with density functions fG(g) and f, (a). An expression for the density
0
of G in terms of the directivity function of the transducer and the

spatial distribution of the scatterers is obtained in Appendix B.

The relationship between the density functions for G and Ao and
the density function of I, the echo level random variable, can be found

using elementary probability theory (cf. {33], p. 205).

<
co{é on (a)f(i/a)da i2T
f(i) = (5.89)
0 i<T
where Co’ a constant that depends on the threshold level T, insures that
f(i) integrates to 1. The directivity function g(8,¢) and consequently

the random variable G are contained in the interval [0,1]. The random



variable Ao is finite and can be assumed to be contained in some inter-

val [O,Amax]. Using these intervals for AD and G, (5.89) can be rewritten

as

A
max 1 . .
CO A "y on (a)fG(l/aJda i>T

f(i) = (5.90)

since fA (a) = 0 for a>A and f.(g) = 0 for g»1. Equation (5.90) is a
o max G
Volterra integral equation of the first kind for the unknown function
fo (a). For the general class of real functions, this type of integral
0
equation does not have a unique solution. However, the equation has a
unique solution within the class of positive real functions. This fact

is easily shown in a proof by contradiction.

The target strength density function estimate is obtained by
numerically solving the integral equation (5.90). The following proce-
dure is one of the many methods that can be used to solve an integral

equation. Some other techniques are described in reference [34].

The unknown density function is first approximated by an nth

degree polynomial,

fa

n
-+ Yol (5.91)
Q o] j=1 J

With this representation for the unknown density, the integral equation

becomes

~ n
i) = i 5.92
£(1) = Zaj B (LA ) (5.92)
j=0
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where
Amax -1
B3 (1A ) = jj a’ £.(i/a)da (5.93)

max

~

and where f(i) is an estimate of the density function for I. The maximum

value of the target strength density, Amax , is not known a priori. It

can be estimated by the greatest single scatterer integrated echo level,

max(Ii). A Monte Carlo simulation has shown that the choice of Amax does

not greatly affect the estimate of f, {a). The unknown coefficients, aj,
)

)

in (5.91) are evaluated by a least squares fit of the functions Bj(i’Amax
to be estimated density, f(i). The normalizing coefficient, Co‘ in (5.81)

is chosen such that fA (a) integrates to 1.
s}

The procedure described above has been investigated using a Monte
Carlo simulation. Random variables, I, representing the integrated
squared echo values were generated by taking the product of a beam pattern
variable, G, and a target strength variable, Ao. The distribution for G
was derived assuming a piston transducer and a uniform spatial distribution
of the scatterers producing single echoes. A number of ways of estimating
the echo level density, f(i), were investigated. The technique which
worked the best was to estimate f(i) by the derivative of a least squares
polynomial approximation to the empirical distribution function of I.
The results of the Monte Carlo simulation of the density estimation
technique are shown in Figure 5.12. The target strength variable, Ab’

was lognormally distributed for the simulation. That is,
A =¢ (5.94)

where y was a Gaussian random variable. The mean and variance of y were
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3 and .36 respectively. The order of the polynomial fit to f(i) was
7 and the degree of the polynomial approximation to f, (a) was 4. Three
(o}

hundred samples were used to obtain the density estimate.



CHAPTER ©

CONCLUSIONS

“he purpose of this dissertation has been to develop methods for
statistically estimating the intensity factor of a filtered Poisson process
and to use the methods developed to determine the structure and analyze
the performance of signal processors that estimate the spatial density of
marine organisms. In this chapter, the principal contributions of this
research are reviewed and some problems requiring further investigation

are suggested,

6.1 Frincipal Contributions

The application of statistical estimation theory to Poisson counting
processes is not new (cf. [35], chapters 2 and 3). However, the problem
of estimating the intensity factor of a filtered Poisson process has not
been treated previously. Therefore, the theoretical development in Chapter
3 is one of the main contributions of this dissertation. Because of the
wide usage of digital techniques, most signal processors operate on samples
from the signal of interest. For this reason, the sampled process inten-
sity factor estimators derived in Section 3.4 are not only of theoretical

interest but are of practical importance.

Previous authors [3], [4], [6] have used a Poisson distribution of
point scatterers as a model for reverberation. These authors, however,
did not take advantage of the many mathematical properties that can be

derived when the received scattered signal is described in terms of a
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filtered Poisson process. For example, Moose [6] has only shown that the
first order density function of reverberation is asymptotically Gaussian
as the scattering density goes to infinity. Using the theory developed

in Chapter 2, it is easily shown that all order densities are asymptoti-

cally Gaussian,

The expression for the rcverberation process first order density
function derived in Section 4.1.4 is a new result. The common approach
used previously has been to use the Edgeworth series expansion for the
first order density function. While this former approach allows one to
easily show that the density is asymptotically Gaussian, it does not pro-

vide any insight into the form of the density function for low scattering

densities.

Chapter 5 contains the most practical contributions of this
dissertation. Nearly all the material in Chapter 5 is new and cannot be
found elsewhere except in other publications by the present author. The
results of the Monte Carlo simulation of the sampled process recursive
estimator in Section 5.1 show that the mean squared error of the intensity
factor estimate is, in some cases, significantly lower than the mean
square errors produced by the two commonly used techniques of echo count-

ing and echo integration,.

The echo integrator and echo counter error expressions derived in
Chapter 5 can be used by the marine biologist in planning an acoustic
assessment survey. If there is some prior knowledge of the approximate

density of the species to be surveyed, the two error expressions show
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which technique is superior and provide the biologist with a means of
determining the amount of acoustic sampling required to obtain the desired

degree of accuracy.

The target strength density function estimation technique described
in Section 5.4 is more general and more accurate than the commonly used

technique which was originally proposed by Craig and Forbes [8].

6.2 Topics for Further Study

There are a number of unsolved problems related to the research

reported in this dissertation. Some of these problems are cited in this

section.

The recursive estimation algorithm which uses independent samples
from the reverberation process has a significantly smaller variance than
either the echo counter or the echo integrator for medium scattering
densities (see Section 5.1.4). However, a number of assumptions were made
in evaluating the performance of the recursive algorithm. The sensitivity
of the performance of the algorithm to these assumptions should be investi-
gated. Some of the factors that should be considered in the study are:

(1) the effect of differences in the form of the assumed and actual echo
level density function; (2) algorithm performance for a process generated
by a non-Poisson spatial distribution; and (3) convergence of the algorithm

when parameters besides the intensity factor must be estimated.

This dissertation has dealt with the problem of estimating the

multiplicative factor of a known intensity function of a filtered Poissen
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process. A natural extension of this research would be to allow the
jntensity function itself to be a stochastic process. Poisson processes
with stochastic intensity functions are called doubly stochastic Poisson
processes. The theory for this type of process is still in its early
stages of development and to date no results have been published on

doubly stochastic filtered Poisson processes.

It is shown in Chapters 3 and 4 that the echo level density function
must be known to obtain a complete statistical characterization of the
reverberation process. Since little is known about the statistics of the
echo level or target strength of marine organisms, some¢ assumptions were
made before the mathematical model for reverberation was completed.

Target strength and echo level data for difference sizes and species of
marine organisms need to be collected so that accurate statistical

models can be constructed.

In the practical application of acoustic techniques to fisheries
resource assessment, the marine acoustics group at the University of
Washington has found that the effect of background noise is almost
negligible. For this reason, this dissertation has not considered the
problem of optimally estimating the intensity of a filtered Poisson pro-
cess received in the presence of noise. However, there are other appli-
cations of the filtered Poisson process model where background noise is
significant. The problem of optimal intensity estimation in the presence
of noise is important in these cases and should therefore be further

considered.
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The validity of the point scattering assumption is questionable
in high scattering densities. Both analytical and experimental studies
should be conducted to determine the effect of multiple scattering as a

function of the spatial density of various types of marine organisms.
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APPENDIX A
MOMENTS OF A FILTERED POISSON PROCESS

The following relationships between the bivariate characteristic
function, the moments and the cumulants are used in this appendix.! The

joint characteristic function of two random variables, Xl and Xz, is

defined as
o o0

Gup)® Guy”

s r! s!

(A.1)

s T! 5! (A.2)

Gup® Guy) 5]

W
[(1]
e
e
™Me
-

where u'rs is the rsth bivariate moment and krs is the rsth bivariate

cumulant. It follows from (A.2) that

- j"(r+s) __ﬂ Ind, (u,,u,)
rs aulrau25 1772

(A.3)

Formulaec that express the moments in terms of the cumulants and vise
versa can be obtained from the characteristic function. The following

relationships apply when X, and X2 are zero mean

2 -— ] —
E[X) "1 = u'y0 =Ky (A4-4)

! The material in the first part of this appendix has been taken from Velume 1

of ¥endall and Stuart (cf. [12] Chapter 3).
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BIX '] = Wy = kyy * 3Ky, (A.5)

' Tk (A.6)

E[X,X,]

2

koo * Kygkgy * Ky (A.7)

' -
Hia2

2, 2
E[X,“X,"]

The bivariate characteristic function of two samples, r(tl) and

r(tz), taken from a filtered Poisson process is (cf. Theorem (2.7))

t ju,z(t,,x,0)
qu("1),r(t2)(”1’“2) ) exP{fo NEE 1 U

e - 1]dx +.4 2v(x) e

1

ju,z(t,,x,0) t ju,z(t,,x,0)
2 2 ~ g
22 dx (A.8)

where t2 > tl. The fellowing expression for krsfr(tl),r(tz)), the rsth

cumulant of r(tl) and r(tz), is obtained from (A.3) and (A.8).

(r+s) ftl o T+S
. = 3 ———————— u,,u dx
Ko (F(£)),7(8)) = j A v(x)[au e 2 (1)
1 o =
ul- u2 =0
t2 BS
A wm[ 6 wmﬂdx (A.9)
t 2.,2 2
1 Buz 1'°2
u, = 0
where ¢ (ul,u2J is the joint characteristic function of z(tl,x,e) and

2152,
z(tz,x,g). When r(t} is a zero mean process, it follows from (A.49)
through (A.7) and (A.9) that

t
S Vel (5,x,0)1dx (A.10)

E[r’(t)]

t

t 2
E[r4(t)] - fo \)(x)E[z4(t,x,(j)]dx"'3(fo u(x)E[zz(t,x,g)]dx) (A.11)
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mm(tl,tz)

Blr(t)7(t)] = [ VOOE[2(t),x,0)2(t,,x,0) dx (A.12)

Elr?(t))r’ (t,)] - B[r () ]E[x" ()]

fmin(tl,tz)

[ v(x)ﬁ[zzctl,x,gjzz(tz,x,g)]dx

min[tl,tz} 2
+ 2(0 \)(x)E[z(tl,x,@)z(tz,x,g)]dx) (A.13)



APPENDIX B

SOME STATISTICAL PROPERTIES OF g(6,9)

The magnitude of the signal reflected by a scatterer at angular
location 6 and ¢ is dependent on the transducer directivity function
g(6,¢). Since the position of the scatterers is random, the directivity
function term, g(9,¢), is also random. In this appendix, some of the

statistical properties of g(6,¢) are investigated,

The moments of g(8,$) can be expressed in terms of the density of
the angular location variables, £(9,¢),

2n w/2
efg" 0,01 = [ [ &'te.0)£(6,4)d6d¢ (B.1)
0 0

where the spherical coordinate system defining the angles is shown in
Figure 4.1. Some typical density functions for & and ¢ are given in
Section 4.1.3. In particular, when the scattering density is constant,

the moment expression is

m/2 27
E["(0,0)] = 5= [ siné [ g"(0,0)d0d0 (8.2)
(8] 0

One common type of transducer is the circular piston which has the

following directivity function

23, (2 sing)
g(8,¢) = — (B.3)
T sing

where
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A = acoustic wavelength
d = diameter of the piston
Jl(x) = first order Bessel function

A plot of E[g4(8,¢)] and E[g8(8,¢)] as a function of d/X for a piston

transducer and a uniform spatial scattering density is shown in Figure B1.

The density function of the beam pattern random variable G = g4(6,
¢) is used in Examples (5.1) and (5.2} and the target strength density
function estimation technique described in Section 5.4. The density
function is obtained from the joint density for 6 and ¢ and the general

expression for a function of two random variables (cf. [33] pp. 199-205).

2’
f.8) = [ Sfaeﬂb:al’slj e fegi"(jj'sj) db  (B.4)
o Iz ete.0l 55 ¢ @0

where

(al,Bl], e, (aj,Bj) = solutions to equations g = g4(0,¢)

The beam pattern density function, fG(g), for a piston transducer and a

uniform spatial scattering density is shown in Figure B2.
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Figure B1. Moments of g(8,¢)for piston transducer and uniform spatial

scattering distribution
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Fipure B2. Beam pattern density function for piston transducer and

uniform spatial scattering distribution



APPENDIX C

MOMENTS OF |r(a)}?

Let {r(a],a_itl} be a zero mean filtered Poisson process defined

by
N{a)
r(@) = ¥ z(%,7,,9;) €.1)
i=1
where i(q,Ti,Gi) is a narrow-band signal for all choices of the param-

eter vector, ©. The signal z(o, T, 0) can be written in complex envelope

notation as

2(0,7,0) = Re[i(e,7,8)e7"] €.2)
where

E(&,T,Q) = EC(Q,T,Q)—jESCG,T,Q)

The squared envelope of r(t} can be expressed in terms of its two low-

pass quadrature components, rc(a) and rs(a),

e |? = r @1l @ (.3

It can easily be shown using the structure of a quadrature demodulator

that
N(a)
r (@) = 37 Z.(07;,0;)
i=1
N{a)
rs(a) = . ES(G’Ti’Qi) (C.4)

i=1
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: 2
The mean and covariance of |r(a)|” are

E[lr(@)|’] = B[z @] +E[r} (@] (c.5)

covllz(@) |4 (3|21 = covizr (@,r” ()]

+ Cov[rc2 (m),:ﬁ's2 B)]+ CO\"[I‘S2 (a),rc2 (8]

+ Cw{:t's2 (Ot),rsz (8)] (C.6)

It can be shown that the joint characteristic function of rc(a),rC(BJ,

r (a) and r_(8) is
¢rc(a),rs(a),rc(5)’rs(6)(ul,uz,u3,u4) =

o juZe (@, x,@)+.. . +juyzs (B,x,0)

exp v(x)E[e -1]dx
3

AN

B juzZo (B,x,8)+juyzg (B,x,0)
+f\)(x)E[e 3te 47 -1]dx (C.7)
Ch

where it has been assumed that o< and that the process originated at

time ;. The derivation of (C.7} is almost identical to the proof of

Theorem (2.7). The moments of rc(u) and rs(a) are obtained using (C.7)

and the moment relationships in Appendix A.

Qo

Blr’ (@] = [ voil (@.x,0)dx (-8)
t
1
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min (o, B)

Covir 2 (@, ] = [ Vil (@x,0)
T
1

, min (ci, 8) 2
2.2 (8,x,0)dx+ 2| [ V(x)E (0x,0) 7 (8,x,0)dx (c.9)
31
. 2 2 2 2 2
The expressions for E[rs ()] and Cov[rc (a],rs (B3], Cov[rS (a),rC (B)]
and Cov[rsz(u),rsz(e)] are found in an analogous way. Using the moment

expressions for the quadrature components, it follows that

[0
Eflr@ %] = [ v )Ee,x,0)[%dx (C.10)
t
1

and

E[Jr(@ |?]r@®)] %] - B[] (o) |*1E[|x8) | 4]

min (o, RB) 2 )
[ veoE[|E(@,x,0]“]%(8,x,0] “dx

min (a, B) 2

2 {' V(XE[Z (o, x,0)F_(B,x,0)]dx
1

+

+ 2 {' V(X)E[Z, (2, x,8)%(B,x,0) ]dx
1

S VRE[E (2, x,0)F (8,x,0) ] dx
t

}
2

2
2
1
2

+ 20 [ VOE[E (a,x,0)% (B,x,0)1dx (C.11)

t

|
|
g min (a, 8)
|

min (o, B) }

1
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where

2

2x,0% = 37 (@,6,0+ 27 (0,%,0)




APPENDIX D

EXPRESSION FOR Aij (t)

Assume that the transducer has a beam pattern with an elliptical
cross section and a uniform intensity across the beam. The cross sec-
. . th .th . .
tions for the i~ and j  acoustic pulses at a distance c¢t/2 from the

transducer are shown in Figure D1.

e dij —_—
dy /
-
—_—
<— d, —> TRANSDUCER
MOTION

Figure Dl. Beam pattern cross sections

If the speed of the transducer is Vo and the time between pulses
is TS, then the distance between the centers of the beam patterns for

the ith and jth pulses, dij’ is

dij = vTTsli—j] (D.1)

The equation for the ellipse shown in Figure D1 is
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orT

An integral expresson for Aij (t} is

m(%)

451n[6 /2} ‘/ 2
Ajj(8) = sm(BA/Z)[ )"x dx

M

Evaluating the integral, it follows that

g 6 |i-j|v..T
(C:t) A . B . '1 _____._._______']_:‘__5_
;50 = 5 sin (’2‘) S (T)S”‘ e ey

6 |i-j]v.T
ct B . T's
"2 5"(2)|1 31veTe | 1 -\ oremm (6,/2)

for |i-j |vTT55 ct sin (8,/2)

= 0 for [1-3|VTT5 >c¢tsin (GA/Z)

(D.2)

(D.3)

(D.4)



