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ABSTRACT

One of the primary goals of this research was to analyze the role
of signaI processing in acoustic systems for estimating the abundance
of marine organisms. In such an analysis, the first step is to design
a reasonable model for the scattering environment. The model used here
assumes that the organisms are distributed according to a spatial Poisson
distribution. With this model, it is shown that the scattered signal
received is a filtered Poisson process with intensity hog t!, where 5 t!
is a known deterministic function of time and Ao is the unknown spatial
density of the scatterers. The problem of estimating the intensity factor
of a filtered Poisson process may arise from a variety of physical models.
For this reason, the general problem is considered first. Estimates ob-
tained using independent samples from the filtered Poisson process are
treated in detail. A lower bound on the variance of the independent
sample estimate is derived and the structure of a recursive estimator for
~p i s obtained .

The filtered Poisson process model for the acoustic scattered signal
or reverberation is then developed in detail. An expression for the
first-order density function for the reverberation process is obtained
and its convergence to the Gaussian density is investigated.

The general theory developed is used to evaluate the performance
of acoustic techniques for estimating the abundance of marine organisms.
The performance of estimators using independent samples from the reverb-
eration process is compared with the lower bound on the variance of the
estimate. A Monte Carlo simulation shows that a recursive estimation
technique satisfies the variance bound. Mean squared error expressions
are dexived for the two commonly used abundance estimation techniques,
echo counting and echo integration.

A method for estimating the probabiIity density function of the
single scatterer target strength is discussed. The mean value of the
target strength is required to scale the echo integrator output and
obtain an absolute abundance estimate.
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CHAPTER I

INTRODUCTION

Electrical engineers have for some time used the methods of

statistical inference in the design and analysis of electronic systems.

Most stochastic system theory developed to date has been concerned with

processing of signals with Gaussian statistics' There are two reasons

for this: �! the Gaussian process model applies to a large class of

physical phenomena; and �! the Gaussian process has many mathematical

properties that are analytically desirable. However, there are several

physical phenomena that can not be suitably modeled by a Gaussian pro-

cess. One type of stochastic process that arises often in nature is the

filtered Poisson process. This dissertation is concerned with the prob-

lem of estimating the spatial scattering density from acoustic volume

reverberation. In this chapter, a brief account of previous research is

given. The chapter is concluded with a preview of the material discussed

in the following chapters.

1.1 Historical Account

A large-scale research effort to develop sonar systems began

during World War II. Since that time, the U.S. Navy has sponsored a

Stochastic processes of this type are often referred to as shot noise

processes because of their initial application as a model for noise in vacuum

tubes [1]. The term filtered Poisson process is more descriptive of their main

characteristic, that is, a process arising from a linear operation on a Poisson

counting process .



great deal of research in the signal processing of underwater acoustic

signals. One aspect of this research has been to characterize reverber-

ation and develop signal processing techniques that minimize its adverse

effects on sonar detection systems. Statistical models for reverberation

were developed in the United States by Faure �964! [2] and Middleton

�967 and 1972! [3]. Research on the statistical nature of reverberation

was also carried on by Ol'shevskii [4] in the Soviet Union. A number of

papers have dealt with the optimum processing of signals in a reverber-

ation-limited environment. Treatment of some of the main results of this

research can be found in the book by Van Trees [5] and the dissertation

by Moose [6]. Two characteristics of the reverberation-related signal

processing theory developed to date are that it assumes that the reverber-

ation process has Gaussian statistics and that reverberation is an

undesirable quantity whose effects are to be minimized.

During the period of rather extensive military-oriented acoustic

research, biologists were beginning to use acoustic systems to study the

distribution and relative abundance of fish populations. Until recently,

the systems used by the biologist consisted of an echo sounder and chart

recorder. Several articles were written that described techniques for

determining the abundance of fish stocks from echograms. Two other

abundance estimation techniques developed were echo integration [7] and

echo counting [8].

The Marine Acoustics Group at the University of Washington was

organized as part of the Sea Grant program in 1968. One af its initial

goals was to develop, apply and evaluate an echo integration system. An



analog echo integrator was built by Lahore as a master's thesis project
in electrical engineering [7]. A digital echo integration system was
later developed [9]. Statistical analysis of various acoustic abundance

estimation techniques [10], [ll] was conducted as a part of the research

discussed in this dissertation. The model used in this statistical

analysis was the reverberation model used earlier in military research.
However, there are two main differences between the biological and mili-

tary applications of the model: �! the Gaussian process approximation

is not in general valid for a signal scattered from fish; and �j biolo-
gists are interested in extracting information from reverberation rather
than minimizing its effect.

Preview1.2

Chapter 3 considers the general problem of estimating the

i alintensity factor of a filtered Poisson process. The structures of signa

processors t at provi e anh 'd n estimate of the intensity factor are derived

for a number of specia cases.1 A problem that arises when the Gaussian

The problem of estimating the scattering density from volume

reverberation is a special case of the general problem of estimating the

intensity of a filtered Poisson process. For this reason, the general

problem is considered first. Chapter 2 contains a summary of the mathe-

matical theory used in the remainder of the dissertation. Some selected

results from the theory of statistical parameter estimation are presented.

The statistical properties of Poisson, filtered Poisson and Gaussian

processes are stated, and in some cases derived.



process approximation is used for a filtered Poisson process with high

intensity is discussed.

In Chapter 4, the filtered Poisson process model for volume

reverberation is developed. The distribution of the random parameters

that appear in the reverberation signal description is discussed. An

expression for the first order density function for the reverberation

process is obtained and its convergence to the Gaussian density is

investigated.

In Chapter 5, the general theory developed in Chapter 3 is

applied to the reverberation model. The performance of various esti-

mators using independent samples from the reverberation process is

compared with the lower bound on the variance of the intensity estimate.

The two commonly used scattering density estimation techniques, echo

integration and echo counting, are studied in detail. Expressions are

obtained for the variance of the estimates for both processors for

received signals in the absence and presence of additive noise. A

method for estimating the probability density function of the single

scatterer target strength is discussed.

Chapter 6 contains a summary of the major contributions of this

research and suggests a number of areas for further investigation.



MATIIEMATICAL PRELIMINARIES

Introduction2.

2.1 Statistical Parameter Estimation

Definition �.1!  estimation model!: The estimation model con-

sists of three components:

i! parameter space: The true value of the parameter to be estimated,

is a point in the Euclidean space Q.
0

ii! observation space: The parameter X is mapped into a set of
0

observed random variables R ,R2, ... ,R in an observation spaceI' 2' ' n

that is assumed to be a subset of an n-dimensional Euclidean

n
space, R .

' Detailed discussions of statistical estimation theory can be found in the

books by Wilks [12!, Craner [15!, and Hogg and Craig [14].

The output of the parameter space can be a random variable or an unknown

constant. 1n this dissertation, it will be assumed that X is an unknown constant .0

The problem of estimating a random variable is discussed by Van Trees [15j.

This chapter contains a brief summary of the mathematical theory

required for an understanding of the results that appear later in the

dissertation. The first part of the chapter deals with statistical

estimation of parameters. Gaussian and Poisson processes and processes

related to the Poisson process are considered in the remainder of the

chapter. The reader' is assumed to have a knowledge of probability

theory and some familiarity with mathematical statistics.



iii! estimation rule: On the basis of the observed random variables,

the parameter X is to be estimated. The mapping of the obser-
0

vation space into the estimate X is called the estimation rule.
0

An estimate h, is unbiased
0

Definition �. 2!  unbiased estimate!:

if E[A ] = A where E[ ] denotes mathematical expectation.
0 0

goes to infinity.

Definition �.4!  efficient estimate!: Let X be an unbiased
0

estimate of X having finite variance. If no other unbiased estimate has
0

a smaller variance, then X is called an efficient estimate for X
0 0

2.1.1 Sufficient Statistics

Definition 2.5 sufficient statistic!: Let R = fR,R, ...,R !1' 2' '' ' n

be a set of n random variables whose distribution function is given by

F r;! !. A function T R! is said to be a sufficient statistic for X if
0 0

the conditional distribution of R, given T R! = t, is independent of X
0

Loosely speaking, a sufficient statistic contains all the infor-

mation about X that can be obtained from the sample, R.
0

Distribution and density functions are often written as P  t! and f {r! to
R

make the reference to the random variable R explicit. In most cases, the notation

F{r! and f{r! is self explanatory. This abbreviated notation will be used in the

following except in cases where it leads to confusion,

Definition �. 3!  consistent estimate!: An estimate A. is consis-
0

tent if A converges in probability to X as n, the number of observations,
0 0



Theorem �.1!  factorization theorem! . Let F r;A. ! be a family of
0

distribution functions having probability density functions f r;A ! with
0

respect to a a finite Borel measure, M dr!. Then T R! is a sufficient

statistic for A if and only if there exist nonnegative measurable func-0

tions V and W such that

f r;X ! = V T r!;A !W r! �. 1!

Proof: Cf. tl2], Chapter 12 or [16], Chapter 3.

Definition 2.6!  ex onential famil of distributions: Let F r;A !
0

k

f r:A ! = C ! !h r!exp[ Z r.  X !r.  r! ]
j.= 1

� 2!

Let R be a set of random variables from a k param-

Then T R! =  tl R!, ...,tk R!! is a sufficienteter exponential family.

statistic for A.
0

Proof The proof follows directly from Theorem �.1!.

The probability density function of independent random variables

taken from a Gaussian, a Poisson, a gamma distribution or many other com-

mon distributions can be written in the form of �.2! . Therefore, the

above theorem provides an easy way of finding sufficient statistics for

estimating parameters from these distributions.

be a family of distribution functions having probability density functions

f r; A. ! with respect to a o finite Borel measure, M dr! and let A be a0 0

point in a k dimensional parameter space. Then F r;A. ! is said to be a k
0

parameter exponential family if



2.1. 2 Cramer-Rao Lower Bound

Definition �.7!  regularit with res ect to the first derivative!:

Let F r;A ! be a family of distribution functions having probability
0

density functions, f r;X ! with respect to a fixed, a finite, Borel
0

measure, M dr! . F r; 1 ! is regu1ar with respect to its first A deri-
0

vative if for every estimate X of X with finite variance
0 0

A

E[X {r!] = E[A.  r!S{r;A. !]
0

�. 3!

where

S rX! = >> lnf rk!a

0

Theorem �.3!  Cramer-Rao lower bound!: Let F r;X ! be regular
0

with respect to its first X derivative and let A be an estimate of X
0 0 0

with bias 1{A. ! = E[X - X ], then
0 0 0

[1+b{A !]
Var[A,]

E[S  r;X !]
�. 4!

with equality if and only if

S r;X ! = K[X - X -b X !] �.5!

and where K is not a function of X
0

A sufficient condition for regularity is that � ln f r,A. ! be dominateda
3A -' o

by some integrable function.  cf. [12], p. 347!.



Proof: Cf. [12], Chapter 12.

2.1. 3 Maximum Likelihood Estimates

Definition �.8!  maximum likelihood estimates!: Let F r;A !,
o

nr C R, X EA be a family of distribution functions having probability0

likelihood estimate of 4
0

If the observed random variables Rl,R2, ...,R are independent1'2' 'n

and if A is an interior point in the parameter space 0, then the maximum0

likelihood estimate is a solution to

n

ln f R.;L ! = 0
d

i=1 p i 0 �. 6!

Maximum likelihood estimates are important because of the ease

with which they are often obtained and because of their many desirable

properties. Some of these properties are listed below [~f [12]., 362,
363!:

i! asymptotically unbiased as sample size, n ~ ~

ii! asymptotically consistent as n ~ ~

iii! if an efficient estimate exists, it is given by the maximum likeli-

hood estimate.

density functions f r;A. ! with respect to a o finite Borel measure, M dr! .Q

The parameter A , X E 0 which maximizes f r;A ! is called the maximum0 0 Q
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2. 2 Stochastic Processes

Definition �. 9!  stochastic rocess!: A stochastic process"

 r t!,tCT! is a collection of random variables defined on a probability

space. The set T is called the index set of the process. When T is a

set of points in an Euclidean space, the process is said to be a discrete

parameter process and when T is a region in an Euclidean space, the proc-

ess is said to be a continuous parameter process.

2.2.1 Karhunen-Loeve Expansion

The parameter estimation theory discussed in the first part of this

chapter considered the problem of mapping a point in an n dimensional

n
Euclidean observation space, R , into a parameter estimate A . The

0

Karhunen-Loeve expansion defined in this section allows stochastic proc-

esses that are mean squared continuous on a finite interval to be

included in this estimation theory model. Readers not familiar with the

Karhunen-l.oeve expansion can find a derivation and a discussion of its

properties in the book by Van Trees [15].

Definition �.10!  Karhunen-Loeve expansion!: Let  r t!, tE [O,T]!

be a mean squared continuous process on the finite interval [O,T]. Then

The stochastic processes considered in this chapter are assumed to be real

processes. Much of the theory developed can be easily extended to apply to complex

processes.

l.i.m. denotes limit in the mean.



n

r  t! = l. i. m. Z R.  I!.  t!
Nwoo i=1

�. 7!

T

i! f d.  t!t  t.!dt = R.

I 1 = J

0 igj

T

iii! f d.  u!K  tu!d,u = R.d.  t!

1 = j
iv! E [R. R. ]

1

2.2.2 Gaussian Processes

Definition �.1I!  Gaussian rocess!: A stochastic process $r t!,

t&Tj is said to be a Gaussian process if for any integer n and any sub-

set  tl,t2, ... ,t ! of T, the n random variables r tl!,r t2!, ... , r t !I 2 n I ' 2 ' ''' ' n

are jointly Gaussian.

The Karhunen-Loeve expansion described in the previous section is

particularly useful when dealing with mean squared continuous Gaussian

processes. The random coefficients in �.7! are obtained by a linear

operation on the Gaussian process and are therefore Gaussian random vari-

ables. Using this fact and property  iv! it follows that R , R , ..., R2' ' 'n

K  t.,u! = E[r t!r U!] - E[r t!] E[r u!]

where the functions  g!. t! are square integrable on IO,Tj and the following
1

relationships hold.
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are independent random variables with joint density function given by

 r - E j!

i=1 i
�. 8!f r,r,

2. 2. 3 Counting Processes

Definition �. 13! Poisson rocess! s: An integer-valued counting

process N S! is said to be a Poisson process with intensity function v s!

if the following conditions are fulfilled

i! for any integer n and n nonoverlapping regions, Sl,S2, ... ,S ,1' 2' ' n'

the random variables N Sl!,N S2!, ... ,N S ! are independent.
n

ii! for any region S, the number of counts in the region S is governed

by the following probability law:

When the process is not Gaussian, the coefficients in �.7! are pair-wise

uncorrelated but not independent.

Much of the material on Poisson processes has been taken from the book by

Parzen [17]. Some of Parzen's results have been extended to apply to the problems.

considered in this dissertation. Proofs of the theorems contained in Parzen are not

repeated here.

in many cases of interest, the region S is an interval in a one-dimensional

Euclidean space, R . The Poisson process defined on R will be designated as  N t!,1 1

t >0!.

Definition �.12!  countin rocess: A counting process N S! is

a real integer-valued process which counts the number of occurrence points

n
in the region S in an Euclidean space, R .



k

v s! ds
p[N s! = k] � >, exp [- Jv s!ds I

S

For k = 0,1,2, ... where v s! is a nonnegative function with bounded

integral.

The process is called a homogeneous Poisson process if the intensity

function satisfies the following relationship

�.10!v s! = v

The process is called nonhomogeneous when �.10! does not hold.

Theorem �.4!  characteristic function of a Poisson rocess!: Let

of  N t!, t>0! is

t

 u! = exp v x!dx e - 1! �. 11!

Prop f: See Chapter 4 o f Parzen [17] .

The moments of a Poisson process can be determined from the deri-

vative of the logarithm of the characteristic function. In particular,

the mean and variance of  N t!,t>0! are

E[N t!] = j � In/  u!
d

u=0

t v x! dx �.12!

1 N t!,t>0! be a Poisson process defined on R . The characteristic function
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and

2

Vex [N t! ] = � > [!n $ N  u! ]

f v x! dx
0

�. 13!

Theorem �.5!  arrival time distribution!: Let  N t!,t�! be a

Poisson process defined on the interval  O,T] and let Tl, ... ,T where1' ''' ' n

0<v «...T <t be the points at which events have occurred. The density1 ' n

function of Tl ~ T with respect to Lebesgue measure is1''' ' n

t

P x,..., x ! = u x !...u x ] exp [- j v x!dx ] �.14!

Proof: From property  ii! in Definition �.13!, it follows that

the distribution function of the arrival time of the first event is

F v ! = I � Prob [no event in  O,zl]]

T 1= 1-exp [-f u x!dx] �.15!

and the -orresponding density function is

P x!! = d P x]! = v x1] exp [-f v x]dx ] �. 16!

The relationships between various order moments and the logarithm of the

characteristic function are given in the book by Kendall and Stuart [18].



The number of events in disjoint time intervals is independent by  i!

of Definition �.13! . Therefore, the joint density of x,...,x is1'' ' n

1� f u x! dx
f T,...,T ! = v T ! e1''''' n 1

� f u x! dx
u T !e

n

t

f u �  x! dx �. 17!
n

e

t

= u t !...u t ! exp [ fu -x!dx[ �. ].8!

Let  N t!,t>0! and T,...,T be defined as in1'' ' n

Theorem �.5! . The density function of TI T given that exactly n

events occurred in  O,t] is

t t,...,t [ n events in  O,t]!1'' '' n

v TI!...V T !n
n

[ f u x!dx[
�.19!

Proof: The proof follows directly from Theorem �.5! and Hayes

rule for conditional density functions.

In �.17!, all terms except the last are density functions for the inter-

vals and the last term is the probability of no event between v and t.n
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2.2.4 Filtered Poisson Processes

Definition �.14!  filtered Poisson rocess!: A stochastic

process fr t!,t>0! is defined to be a filtered Poisson process if it can

be represented by

N t!

r t! = E z t,v,8 !m'-m
�.20!

where  N t!,t>0! is a Poisson process,  8 ! is a sequence of independent
«m

8 where z t,x,8! = 0 for t < T.

Theorem �.7!: Let  r t!,t>0! be a filtered Poisson process. Then

for any t >t ... t >0, n>1 and real numbers u ,u2, ... ,u , the joint,
n n-1 1-

characteristic function of r tl!,r t2!, ... ,r t ! isn

r tl!,...,r t ! "1'"2''' '"n

t ju z t,x,8!+...+ju z t jxj8!
= exp  f u x!E [e " " ! ]Ex

je z t,x,O!+... ju z t,x,O!
+ u x!E [e -!]Ex

t!

�. 21!

t ju z t,x,B!
+f u x!E [e � !]4x !

n-1

random vectors that are independent of  N t!,t>0!, T is the occurrence

time of the m event and z t, T,8! is a function of the variables t,v andth
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Proof: The joint characteristic function of the random variables

r t !,r t !, ...,r t ! is by definition
n

n

 u,...,u ! = E exp [ j Z u. r t, !]
1 '' '' n j.=l

N t !

= E [exp  ! 8 g  t !] �. 22!

where

g  z ! = u z t, T,O !+...+u z t,v,O !

Using conditional expectations, �.22! can be rewritten as

r tl!,...,r t ! l''''' n!
n

N t !

Z E [exp  j g g  t !!/N t ! = k!P[N t ! = k]
m=1

�.23!

The conditional expectation in �.23! can be written as

N t !

E[exp j g g  t !]/N t ! = k]

N t !

f "J'" =f "E[exp j g g  r!!/N t! =k, T,...,T ] �.24!

E t,....tk/N t ! = k!dt ,...,dtk

Using the arrival time density function obtained in Theorem �.6!, the

conditional expectation becomes
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N t�!
E [exp j g g  t !!/N t ! = k]

k

f "" f " E  E e~ jg  t !!!v t !!
[ f " e  !xdx]

�. 25!

dTI' ..d<k

The multiple integral in �.25! can be written as a single integral raised

to the k power  cf. [17], p. 155! .th

N t !

E [exp j Q g  t !!/N t ! = k]

t k

k [ f "e x! E [exp jg x!! ]dx]
[f "e x! dx]

�. 26!

Substituting �. 26! into �. 23!, it follows that

~l t !,...,r t ! 1' ' ' n
n

t k

[ f u x! E [exp [jg x!] dx]
exp [- f e  x! dx ] Z

k=o

�. 27!

The form. of the characteristic function in �.21! is obtained by writing

the summation in �.27! as an exponential.

'Ihe characteristic function in �.21! is used to obtain some moments

of a filtered Poisson process in Appendix A. It is easily shown that the

mean, m t!, and variance, a  t!, of r t! are2
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t

m t! = f m x!E[z t,x.8!]dx �. 28!

t

m  t! = 1 u x!E[z  t x 8!]dx �.29!

Definition �.1S!: A stochastic process  r t!,t ET] with finite

r t.! � E Ir t ! ]
l

i a/r ti! ]
�.30!

satisfies

'I! r* t !,..., r* t !   1' ' ' ' n!
n

Z u.u,pIr t.!r t.!]
2 1 j=l ' 3 ' 3

�.3l!

as the parameter tends to the given limit, where

E r t.!r t.!] -E r t,! E r t.!
I. 1 3

p!r t !r t.!]-
i j

�. 32!

and where o [r  t. ! ] is the standard deviation of r  t. ! .
1. 1

second moments and whose distribution depends on some parameter is said

to be a ymptotically Gaussian as the parameter tends to a given limit if

the following conditions hold for every set of indices tl t tl' 2' '' ' n

the joint characteristic function of the standarized random variables,

r* tl! I* t2!, ... ,r  t !, where
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Theorem �.8!: Let  r t!,t>0! be a filtered Poisson process with

intensity function o x! = X 8 x! where 5 x!>0 for x>0, and let

t

m t! = A f g x!E[z t,x,8!]dx �. 33!

 t! = ~pJ 8 x!E[z  t,x.O!]dx �.34!

f tf3 x!E [z t.,x,o! z t.,x,9! fdx
�.3~!P t..t !

J

3L t! = A f g x!E[z  t,x,8!]dx �.36!

2If the mean, m t!, the variance, 0  t!, and the third cumulant, k t! are

finite for all t, then  r t!,t>0! is asymptotically Gaussian as A0

Proof: The characteristic function of the filtered Poisson process

as determined in Theorem �.7! can be written as

~r t !,..., r t ! 1' ' n
n

ju z t .x,8!+... ju z t,x,8! ]dt

texp vx E e 1 1' '- ' n n' '- -1 x
0

�.37!

where z t.,x,8! = 0 for t.<x and i = 1,2, ...,n. Expanding the logarithm
3. 3.

in a power series, it follows that
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n n

= j Q u. m t. ! � � Z u~u p t~, tk! a t~! a tk!
i=1 R,k=1

�. 38!

c f ju.[ K t.!
>=1

where ~C %<1. Define a new vector random process  r* t!,t>0! where
0

r  t. ! - m t. !
l, 3.

*  i! a t.!
i

�.39!

I n
1n fr* t !,...,r  t ! 1''' '' n 2 Dc k' k

n

t
3n f 8 x! E I'z  t,x,G! jdx

o [ f g x!E[z  t,x,o!]dx]
�,40!

n

lim $ +  ! *  ! 1 s xu ! Q ugukp tg,tk! �.41!
0

It follows from the definition of the characteristic function, �.38! and

�. 39! that



POISSON INTENSITY ESTIMATION

Introduction3.

A number of aspects of the Poisson intensity estimation problem

are considered in this chapter. The problem af estimating the intensity

of a Poisson counting process is discussed in the first section. It is

then shown in the second section that the problem of estimating the

intensity of a filtered Poisson process is in many cases equivalent  in

theory! to the problem considered in the first section. A problem that

arises w'nen the Gaussian process approximation is used for a filtered

Poisson process with high intensity is discussed. The maximum likelihood

estimator for the intensity factor using independent samples from the

filtered Poisson pxocess is derived and a bound on the vaxiance of the

estimate is obtained.

A filtered Poisson process is a reasonable model for many random

phenomena occurring in nature. As was mentioned in Chapter 1, the filtered

Poisson process was originally used as a model for shot noise. It will

be shown in the next chapter that acoustic volume reverberation can also

be modeled by a filtered Poisson process. Some other examples of filtered

Poisson processes are given in reference [17]. This chapter deals with

the problem of estimating the Poisson intensity factor from a filtered

Poisson process. Such an estimate often provides information about the

physical environment that produced the process.
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Poisson Counting Process Intensity Estimation3.1

u t! = A S t! �.1!

and 8 t! is a known deterministic real positive function defined in the

interval j0,t]. We wish to find an estimate of ~ from a realization of0

the process  N t!,t>0!. The available information or statistics that

can be used in obtaining the estimate of X are the occurrence times of
0

the Poisson events T ,T ,...,r . The joint density function of T ,T ,...,

Tk with respect to Lesbegue measure obtained in Theorem �.5! is

P x,x,...,xk! = L 8 x !...8 xk!exp [ � k f 8 x!dx ]2 k o 1 ''' k o o

exp [ k ink +  n[B x !...8 x ! [- L f 8 x!dx]0 ' 1 k 0 0

The second form of the density function shows that the distribution of the

arrival times is a one parameter exponential family. Using Theorem �.2!,

it follows that k, the number of Poisson events in j0,t], is a sufficient

statistic for A . In other words, the number of events, k, contains all
0

the useful information about the parameter A. and the estimate of A can
0 0

be based solely on k.

The probability density function of k given in Definition �.13! is

k

f 8 x!dx t
f k X ! � �, exp[- L f 8 x]dx] �. 3!

The estimation problem considered in this section is the following.

Let  N t!,t>0! be a nonhomogeneous Poisson counting process with inten-

sity function v t! where



The maximum likelihood estimate for X in terms of k is given by
0

�. 4!

0 0

The solution to �.4! is

�. 5!

The expected value of the estimate is

�. 6!

and the variance is

V er  X ] E[k ] 2 0
o t f2 0 t

f l! x!dxj f ! x!dx
�. 7!

Therefore, the estimate is unbiased and is consistent.' The Cramer-Rao

lower bound on the variance of an estimate of A stated in Theorem �.3!
0

js

Since 5 x! >0, xc[o,t], A converges to A in the mean squared sense as
0 0

t + ~. The consistency of X follows by recalling that convergence in the mean
0

squared sense implies convergence in probability.

d
dX

0

f k;A! =0
dA

0 0 0

k

g x!dx exp � a f 8  x! dx]

k
0 t

fe d x!dx

~ER

f  ! x! dx

Var[A ] = E j > ln f k;A!8 2

0
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�. 8!
t

J 8 x! dx

The variance in �.7! satisfies the Cramer-Rao bound with equality and

therefore, A is an efficient estimate of X
0 0

3.2 Filtered Poisson Process Intensity Estimation

Let  r t!,t�! be a filtered Poisson process defined by

N t!

r t! = Z z t,~,8 !
m=1

�. 9!

r t! ~

Theorem �.1!: I.et  ri t! t�! and �2 t! t+0! be filtered Poisson
processes defined by

N  t!

11 t!= +zl t 718l ! �. 10!

N  t!

2  ! ~ 2  ' 2R'O2d
K=I

�. I I!

where  N t!,t�! is a Poisson counting process with intensity v t!

9 t!. When the individual Poisson events are discernible, the problem of

estimating A reduces to the problem considered in the previous section0

and the intensity factor estimate is given by �.5! . The following theorem

shows that under some rather general conditions, the Poisson occurrence

times, x., can in theory be uniquely determined from the observed processj.





27

Over the interval  x,min x, T !! the only contribution to r  t! is
zl t,T11,8 1! and the only contribution to r2 t! is z2 t, 2,021!. Since
 t! rz  t! for al 1 tE [0 T] it follows that zl  t 721 821! z2 t TII

811! over the interval  all,min F22,F12!! which has nonzero length with
probability 1 by �.14!. By analytic continuation  cf. tl9], p. 206!,
z t TI l 8!z t,T,8! for all t g ail T]and by assumption i!
will be equal to zero outside [x 1,T ].

Since z  t,wi ,8 !  which equals z2 t,r ,8 !! is know~ over its
entire nonzero time interval it can be substracted from rl t! and r2 t! .
The same procedure can now be used to show that zl t c12 822! z2 t T22,

822!, zl t, TI3,013 2 ' 23'-23

The above theorem shows that if the response functions are analytic,
the Poi.sson occurrence times can be obtained from the observed process  r t!,
t�!. In this case, the estimate of X is obtained using �.5! and the
variance of the estimate is given by �.7! .

The class of analytic functions is quite general. One subclass is
the generalized exponential functions which include real and complex expo-
nentials, sinesoids and sums and products of these functions.

Theorem �.1! does not provide a practical solution to the problem
of estimating the intensity factor of a filtered Poisson process since it
is not in general possible to implement a signal processor that will resolve
all individual Poisson events. However, the theorem shows that the vari-
ance of any estimate of A is lower bounded by the variance in �.7!.

0
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Cov [r t!, r u! ] = X p  t, u! �. 18!

where p  t,u! is a deterministic function of t and u defined byr

min t, u!
p  t u! = f E x!E z t,x, !!z u,x,e!]Ex �.19!

The problem of estimating the intensity factor, A , is equivalent to the
problem of estimating the scale factor of the covariance function of the
Gaussian process approximation for  r t!,t>0!.

The maximum likelihood estimate of A can be obtained using the
0

Karhunen-Loeve expansion described in Section 2.2.2 Define the random
variables R. by

I

T

R. = f r t! $.  t! dt �. 20!

with the functions  I!.  t! chosen to satisfy
1

�. 21!

Using the Gaussian approximation for r t! and the properties of the

Karhunen-Loeve expansion, it follows that R. are independent Gaussian
1

random variables with E[R,] = 0 and Var[Ri] = A y.. The process

�. 22!

converges to  r t!,t>0! in the mean square sense as k approaches infinity.

The joint density function for Rl, ~, ~,R� is
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For a positive definite covariance function, the number of terms in the

Karhunen-Loeve expansion is infinite  cf. [IS], p. 303! and

lim Var [X ] = 0
k~ ~'

�. 28!

With the Gaussian process assumption, �.28! shows that it is possible to

obtain a. zero variance estimate of A from any finite observation interval
0

fO,T]. s However, the Poisson counting process analysis has shown that the
minimum variance attainable is

Var [A ]=
0

I !! x! dx
0

�. 29]

The source of the dilemma is the two contradicting assumptions made at the

beginning of the analysis. The assumption that r t! has finite variance

requires that A is bounded. On the other hand, the convergence to a0

Gaussian process requires that A goes to infinity. Bounded moments and
0

Gaussian convergence can be obtained for the modified process  r t!/vA
0

t >0!. The covariance of this new process is not a function of X and
0

therefore does not provide a means of estimating X . The rather disturb-
0

ing existence of a consistent estimate of X from a finite observation
0

' The existence of a zero variance estimate for the covariance function scale
factor has been discussed previously. Scharf and Lytle [20] have investigated the

stability of the estis!ate and have found that the number of terms in the Karhunen-

Loeve expansion should not exceed the tis!e-bandwidth product of the stationary

process. The reader is referred to [20] for further discussion and a list of related

references .
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interval of a Gaussian process can be avoided in a number of' ways, For

example, the estimate can be based on a finite number of samples from

the process. The problem of estimating X using independent samples from
0

tQe process is considered in the next section. The presence of some white

Gaussian noise in the observed data also results in an estimate with non-

zero variance. Although practical methods f' or estimating X can be de-
0

rived using the Gaussian model, the performance of the estimators should

be evaluated using the statistical properties of the filtered Poisson

process.

Intensity Estimates Using Independent Samples3.4

In many cases of interest, the response functions, z t,T,B!, of

the filtered Poisson process {r t!,t> 0! defined in �.10! are of fixed

duration. That is,

�.30!

When �. 30! is satisfied, the random variables obtained by sampling r t!

at a rate less than or equal to I/T are independent. The independence

of the samples follows fram the independent increment property of the

Poisson process and the assumed independence of the random vectors 9.

The problem of estimating X using independent samples from {r t!,
0

t > 0! is considered in the following. Two limiting cases of the estimation

problem are investigated first.
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3.4.1 Low and High Density Estimates

l.et Rl, R2, ..., R be the variables obtained by sampling  r t!,
n

t >0j. at times tl, t2, ..., t . The process will be designated as a low1' 2' ' ' n'

density process when

f X I3 x! dx«1
ti T

1 = I~ ...r n �.31!

and as a high density process when

ti
X I3 x!dx>>l

i T o
z = 1, ..., n �.32!

For the low density process, the probability of more than one

Poisson event occurring in the interval  t.-T,t.! is very small. There-
i 1

fore, if the individual response functions, z t,t,8! are nonzero with

probability 1 on the interval  v.,x.+T!, the number of Poisson events,
1

k,, occurring in the interval  t.-T,t.! can be approximated by
1 1 1

]0 R =0
i 	 R j0 �.33!

That is,, the individual events are resolved by sampling the low density

process at a rate of 1/T. The optimum estimate of X for this case is
0

given b> �.5!. The block diagram for the corresponding signal processor

is shown in Figure 3.1.
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r t!

SAMF

RATE

f j! x!dx

Figure 3.1. Low density estimator

The mean and variance of the low density estimate are

n

I o] = g Z E[Y ]
f B x!dx '
tl

�.34!

n n/L

v [X,] g  E[Y.Y.] � E[Y.] E[Y.]!
f  ! x!dx i=i j= 
tl

= P IE[Y',] -  E[Yi]!'> �. 3S!

E[Y.] = E[Y~] = 1 ~ Prob [one or more events in  t.-T,t.!]
1 1 1

i � exp -i f 8  x! dx
0

ti T
�. 36!

The last equality follows from the independence of the Y.. The first and
l.

second moments of Y. are
1
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It follows from {3.34!, {3.3S! and �.36! that

n
tim -+exp [-2 f S x!dx !

i=1 t'-T
E[X ] {3.37!

tn 8 x! dx

Q [exp [ -2 f z B x!dx] � exp [-2X f ' E x!Ex! }
i=1 t.-T t. -T

Var [X ] �.38!
tn 2

[ f E  x! dx J
tl

E[R.] = }[ m.

Var [R.] = X a'. �. 39!

where

t.

m, = f B x!E[z z.,x,O!]Ex
t ~ -T

1

a. = f E x!E[  T.,x, !!]Ex
t.-T

The samples Rl, R2, ... R from a high density process have a
n

Gaussian distribution as X approaches infinity. The mean and variance
0

of the independent samples from  r{t!, t>0! are
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In many cases of interest, such as the reverberation problem considered

in the:=ollowing chapters,  r t!,t>0j is zero mean. The joint density

function for the zero mean samples using the Gaussian assumption is

2
n 1 -r.

f r,...,r ! =    exy [ � >]
i=I ~ 2 2A 0.

0 i
0 1

n 2

exp [- >> Z 2 ]
0 i=I a.

1

�. 40!
102...cf

statistic for estimating A.. The maximum likelihood estimate is the
0

solution to

ln f R ,...,R !1' '' n
0

�. 41!

0

and

Q 2

1 g i
0 n . 2

i=1 0.

�.42!

A block diagram of the high density processor is shown in Figure 3.2,

r t!

SAMP

RATE

Figure 3.2. High density estimator

n

it fo!lowe from Theorems �.1! and �.2! that g  r. /o'. ! is a sufficient
1=l

1 i
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The expected value of the estimate in �.42! is

E[R. ]

i=I o.
1

{3.43!

The variance of A is
0

�.44!

n 4
[R ]

2 . 4 n o
n i=1

1.

The fourth moment of R, can be calculated using the assumed Gaussian dis-1

tribution or the actual filtered Poisson distribution. For the Gaussian

distribution,

E[R. ] = 3 E[R. ]! = 3X 0. �.45!

Var[A ] 2 2

o n o �.46!

It can be shown that for the density function in �.40! the variance of

satisfies the Cramer-Rao bound with equality. Therefore, A is the0 0

minimum variance, unbiased estimate of X for the assumed Gaussian distri-

bution of the samples Rl,R2,2' 'n
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The fourth moment for a sample from a zero mean filtered Poisson

process given in  A.ll! is

E[R. ] =am.+31 G.4 2 4

i o4i o i �. 47!

where

m . = J g x!E[z  t.,x,0!]dx
I

Therefore, the variance of A is
0

n
m .

Var[A ] = � Z � + � A
o 2 . 4 n o

n i=1 a.
3.

�. 48!

3.4.2 General Estimator Vsing Independent Samples

In the general case, the distribution function of the random

variable obtained by sampling {r t!,t>0! at time t' can be written as

F{r ,,A ! = Z F r ,/k!Prob k;A ,t'!t'' o k t' 0 �.49!

The second term in �.48! dominates in high densities and the variance

expression reduces to �.46!. Unlike the continuous process estimate

discussed in Section 3.3, the Gaussian approximation for independent

samples from a high density process produces a result that asymptotically

agrees with the Poisson process result.
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where F r,/k! is the distribution of R, conditioned on the occurrence

of k Poisson events in the interval It'-T,t'] and Prob k;A,t'! is the
0

probabi?ity of k events occurring in [t'-T,t'], that is,

t' k

[ f, T1 1! x!dx] t'
Prob k;1 .t'! = exp [ f, -1 8 x!dx]0'

kp t'-T o �.50!

If it is assumed that F r ,/k! has a density, f r ,/k! with respect to a

fixed measure, M dr!, then the density of F r ,!  with respect to M dr!

1s

k

[J, 1 8 x!dx]
f r ,,'A ! exp [- J, <X 8 x]dx ] f r,/k]  8.81!

The maximum likelihood estimate of X in terms of the independent
0

samples R,R2, ...,R is the solution to �.6!. Using the densityI' 2' ' ' n

function in �.51!,

t. k

[ f tk 8 x!dx]
n

t.
n � '

f 1 8  ! g o k=1  k-1!!
t.-T

i=1 i i=1

f Ri/k!
�.52!� 0

k

[ f T1, 8 x]dx]

k=o
f  R./k!

0 0

�+ b[A ]!
Var[A ] >

8 [ E dk 1o f k.;1 ! ! ]
i=1 o

�.53!

Assuming regularity with respect to the first derivative of F t,;t!, thet

Cramer-Rao bound on the variance of the estimate is
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where b[A ] is the bias in the estimate, Since the bias is in general
0

unknown, the following lower bound on the variance of the estimate can

be used.

�. 54!

3.4.3 Recursive Estimation of A
0

Maximum likelihood estimation of A is not practical for real time
0

data processing systems. The maximum likelihood estirrrate must be dete~-

mined by numerically solving � 52! for A for a set of observed sample
0

values Rl, R2, ..., R . 1 f addi tiona1 samples are obtained, the previous'1' 2' ' 'n'

estimate can not simply be updated. A new solution to �.52! must be

obtained using both the old and new sample values. Numerical solution of

�.52! is complicated by the infinite series representation for the

sample value density function.

The problems connected with the maximum likelihood estimate make

a recursive estimation algorithm for A. desirable. The technique of
0

stochastic approximation introduced by Robbins and Monro [21] can be

used in many cases to obtain such an algorithm.

The stochastic approximation algorithm to be used is the following.

Let R ,R,, ... ,R be a sequence of independent, identically distributed

random observations and let Z R,X! be a random variable whose distribution

depends on R and the parameter X. If E Z R,X !] = 0, then the algorithm
0



A. =X -aZ R,X!
n+I n n n' n

�.55!

where

�. 56!

2
n

n=l

�. 57!

converges to A with probability one provided that EfZ R,A!] satisfy
0

certain weak conditions 12lj.

I f R,R, ..., R are samples from a homogeneous Poisson process
n

and Z R,X! is defined as

Z R,X! = � � > ln f  R,A!d

then

OO dR Z R.X! ] = -f f r.1! � 1 1n f r,1!M dr! �. 58!

f f r;As!M dr! = f 1n f r;1 !!f r;1 !M dr!
o ao � CO

�. 59!

E fZ R;A. ! j

If it is assumed that F r,j ! is regular with respect to its first deriva-

tive, then
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However,

f f r;A ]M dr! = < �! = 0
p OO p �. 60!

and

EtZ R;X ! ] = 0
0

Therefore, the recursive estimation algorithm for A is
0

�.62!

a = � G  X!
1

n n n n �.63!

where

G A! 1

E d~ ln f R ;A !

That is, G  X ! is the Cramer-Rao bound for an unbiased estimate assum-n n

ing that A. is the true parameter value. Sakrison [22] has shown thatn

under certain weak conditions, the stochastic approximation algorithm in

�.62! with a defined in �.63! is asymptoticallyefficient. A blockn

Any choice of coefficients, a, may be used, provided that the two condi-n'

tions in �.56! and �.57! are satisfied. One choice for a is
n
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diagram of the recursive estimator defined by �.62! and �.63! is shown

in Figure 3.3.

R!...-R

Figure 3. 3. Recursive estimator

It is interesting to study the structure of the recursive estima-

tor for low and high density processes. For the low density process,

-XnT
e r = 0

n

f r,A ! �.64!
~ T -AnT

n
r j 0

n

=0
n

�. 65!

thThe n term in the gain sequence, a , is approximated by
n

[in f r;X !]d n
-T+ � r P 0I

n
n
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1
a = � G  X!

n

n n n n nT
�.66!

Therefore, the total algorithm is

R = 0
n

+
n+1 n

�. 67!
n 1

+
n nT

R ] 0
n

lt is easily shown that the algorithm in �.67! is equivalent to the max-

imum likelihood estimator for a low density process  see Figure 3.1!.

The equation for the maximum likelihood estimate in Figure 3,1 is

n

= � ~~ Y,1
n+1 nT ~ i

i=1

�.68!

where

R, = 0
j,

R. �
l.

Equation �.68! can be rewritten as

n-1
1 ~ 1=  1 Y'Y. + � Y.n+1   n !  n-l!T ~ i nT i

i=1

+ � Y
n n nT n

n
R = 0

n
+

n ~n
n nT

R g 0
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Therefore, �. 67! and �. 68! are equivalent.

sample is approximately

2

rn
2 1 n

n
n

where

o = J E[z  t,x,B!]dx

and the function Z  r, k. ! isn' n

2

Z r,1 ! =- � [1n f r .1 !] =- � [ -1]d l n
n' n dX n' n 2X 2

n X o

thThe n term in the gain sequence is

a = � G  A!
1

n n n n
d

2

n E[[ 1 1n f r;1 !! [

= ZX
2

n

Therefo:.e, the high density recursive estimation algorithm is

R 2

0

�.69!

For the high density process, the density function for the n
th
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It can be easily shown that �.69! is equivalent to the high density

maximum likelihood estimator shown in Figure 3.2.

The recursive algorithm in �.62! requires that all the parameters

of the sample value density function f r ;X !, except A,, be known an' o 0

priori. When this assumption is not satisfied, the algorithm can be

modified to estimate all the unknown parameters simultaneously [22] . The

algorithm also requires that the sample values be from a stationary pro-

cess. Recent work on stochastic approximation algorithms �3] has shown

that this condition can be relaxed if the form of the nonstationariness is

known. When the samples are nonstationary, Z R ;A ! is a function ofn' n

R ,A and t and the gain sequence, a , is a function of X and tn'n ' n n' n n



CHAPTER 4

REVERBERATION MODEL

Introduction4.

4.1 Scattering Model

There are two general approaches to the problem of characterizing

the signal reflected from a scattering field: the classical approach and

the phenomenological approach. The classical approach to the problem

starts with the wave equation for propagation in an inhomogeneous medium

and attempts to determine a solution or approximate solution satisfying

the necessary boundary conditions. It is extremely difficult to obtain

the detailed statistical characteristics of the reverberation with this

approach. The phenomenological approach to the problem starts with some

random distribution of point scatterers and assumes that the rest of the

The initial purpose of the research described in this dissertation

was to analyze and develop active sonar systems for estimating the spatial

abundance of marine organisms. By making certain assumptions about the

spatial distribution of the organisms, the problem reduced to a special

case of the general problem described in the last chapter. The remainder

of the dissertation deals with the specific problem of using an active

sonar to estimate the abundance of scatterers with a spatial Poisson dis-

tribution. In this chapter, the relationship between the physical model

and the statistical characteristics of the scattered signal is investi-

gated.
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medium is homogeneous and isotropic . This approach is valid if the

sizes of the scatterers are of the order of a wavelength or less and if

the effects of multiple scattering are negligible. This type of scat-

tering is often called first order point scattering. It is assumed that

the conditions for first order point scattering are satisfied in the

following development. The fallowing additional assumptions about the

scattering model are also made:

I! co-location of the acoustic transducer and the receiver

2! constant velocity of propagation in the medium

3! the transmitted signal is narrowband

4! the reflective properties of the individual scatterers are

not a function of time or frequency.

Assumptions 1 to 3 are reasonable for typical sonar systems with a verti-

cal beam pattern. Analysis of sonar systems with nonvertical beams should

include the effects of sound velocity variations with depth. Assumption

4 implies that the signal reflected from a scatterer is a scaled replica

A more detailed comparison of the two approaches to ~the scattering problem and

a list of related references is contained in the papers by Middleton [3].

A signal, r t!, is narrowband if it can be written as

jv t
r t! = Re[f t!e ]

where f t!, the complex envelope, is slowly varying with respect. to exp jm t! .c

Several properties of narrowband signals are discussed in Appendix A of Volume 3

of Van Trees [5].
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of the incident signal. Signal distortion occurs when the scatterer has

a resonant structure in the frequency bandwidth of the incident signal

or when the reflective boundary in the scatterer is not well defined,

Middleton has suggested that this type of distortion can be accounted

for by modeling the scatterer as a stochastic linear filter [3j. A

reverberation model that accounts for nonzero velocity gradients and

pulse distortion would app1y to a larger class of problem than the mode1

presented in this chapter but would not provide any additional insight

into the problem of statistically estimating the scattering density.

4.1.1 Single Scatterer

The following model is used for the sonar system. A narrowband

signaI, s  t!, is applied to an acoustic transmitter at t = 0. The

signal can be written in complex envelope notation as

j o t
VZE Re [f t] e ! t>0

�. I!

t<0

where E is the energy in the signal,  o is the carrier frequency and
t c

f t! is the complex envelope normalized to have unity energy. The

acoustic transmitter is assumed to have ideal linear response character-

istics, that is, the pressure wave out of the transmitter is proportional

to the input voltage. Assume that a single scatterer is located at polar

coordinates  r,0,$! relative to the transmitting source and has an inward

radial velocity of v as shown in Figure 4.l. Further, assume that the
r

' '1he source and transmitter may have any general velocity vectors. The only

part of the velocity that a ust be specified is vr'
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norizontal distance traveled by the transmitter between the time of'

transmission and the time of reception of the signal is negligible.

CATTERER

Figure 4.1. Geometry for scattering model

The received signal resulting from the scatterer at  r, 9,!! is

e ff t - 2r/c! e �. 2!
 c t/2!

gation loss due to spherical spreading and absorption, g�,$! is the

value of the beam pattern directivity function at angular coordinates

 9,$!, u! is the phase of the returned signal, tv is the Doppler shift

introduced by the scatterer and A is an amplitude factor that accounts

for the size of the scatterer, its angle of illumination, etc.

The Doppler shift can be approximated by

2V
r

D c
�. 3!

2where c is the velocity of propagation, exp  -a ct!/ ct/2! is the propa-
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WT «
C

2v
r

�. 4!

4.1.2 Several Scatterers

An expression for the received signal due to several scatterers

follows directly from the first order point scattering assumption and

�-2!-

x!!
r t! = Qz  t, T.,8. !

where

A. 2 8 -u ct
z tv., 0,,! = Re [f t-T.! e!   c "Di! >i j � 5!ig   i.4,-!e    o + - t+ -!

 c t/2!

In the case of a time limited signal, the bandwidth, W, is defined such that

f �IS f t! ! I'dt = .9 f�lÃf t! ! l'dt.

A similar definition can be made for the time duration of a bandlimited signal.

provided that v /c«1. The radial component of the scatterer velocity,
r

v, also causes a compression or stretching of the time scale of the
r'

pulse envelope, f t!. This effect can be ignored provided that the

time-bandwidth product," WT, satisfies the following relationship  cf,


 j, p. 241!
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parameter vector, 0. = �., I!.,A., k],Q.!, and N t! must be specified to
-1 1 1 l Oi l

complete the model.

The number of echoes received in the time interval, [O,t], is a

function of the spatial distribution of the scatterers. It will be as-

sumed that the scatterers have a nonhomogeneous Poisson distribution in

volume with a spatial intensity function, v  V!, that is,
s

[ Jv, V!dv]"
P N S! =k] =, exp [Jv  V! dV] �. 6!

The underlying assumptions for the Poisson distribution were given in

Definition �.I3!. The Poisson intensity as a function of time t is

v t! = d [f v  V t'!! ~S, dt'] �. 7!

where V t'! is the volume insonified in the time interval I'O,t']

In many applications, the sonar system has a vertical beam and a

spatial density that is only a function of the depth, d. In this case,

�.7! becomes

d [f t [et eee9] BV t'!
�. 8!

where 8 is shown in Figure 4.1. So]]]e particular cases are given below.

and N t! is the number of scattered signals  echoes! arriving at the re-

ceiver in the time interval [O,t]. The statistical properties of the
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Case i!:

Case 2 j.

ifd d
0

ifd!d
0 0

v t! =

constant density, u  V!
S 0

[X f dt'f d t' slllsd8]t !!/2 mc

0

A nc t
5 2

0

scattering l,ayer,

cos  Zd /ct'!
d t. p 02sk f dt' f t'2 c/2!dsis8d8

dt

0
c

if � ! d
ct

2 0

ct
if � < d

2 0



3 2 2
27t! 2 t � 2 d t if � > d

ct

2 � 0

�. 10!

if � < d
ct

2 0
0

The distribution of the sequence of random vectors, O., must be
1

specified to complete the statistical description of r t!. If it is

assumed that B. is a sequence of independent, identically distributed,
-1

random vectors and that 6. is independent of  N t!, t>0!, then r t! is a
1

filtered Poisson process. The independence of the parameter vectors,

8., follows directly from the spatial Poisson assumption. The independ-
1

ence of  N t!,t>0! and 8. also seems reasonable for most cases of inter-
1

est. !in the remainder of this dissertation, it is assumed that a

filtered Poisson process is a satisfactory statistical model for

reverberation.

4,1.3 Characterization of the Random Parameter Vector

C
In very high scattering densities, the size of the individual scatterers is

inversely proportional to N t! and A , the echo amplitude, and is not independent of

 N t!,t>0!. 'lhe Poisson assumption is questionable in this case.

The random parameter vector, 0., has components  8.,$.,A.,o1 .,g.!.
~1

The random phase, Q., will be assumed to be uniformly distributed from 0
1

to 2x. A physical interpretation of this assumption is that the ranges

of the catterers, modulo one wavelength, are uniform random variables.
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From the uniform phase assumption, it follows that all the odd order

moments of the received process I.r t!,t>0! are equal to zero.

P [scatter in hV] = v  r,6, I!!KV

 r,6,4! r sin6dBd I!
2

s
�. 11!

Therefore, the joint density function of the angular location �, I!! con-

ditioned on the range, r, is

 r, 6, l!! sinB
s

 ,4; !�
ddf >  + 8 8!sls888

s
o o

�. 12!

The denominator in �.12! is a normalizing constant that insures that

the density function integrates to 1. In the special case of a vertical

pointing sonar and a spatial density that is a function of depth, the

density function is

u  d!sinB
s

f �, �!; d!
2m m/2

J ddf v  d!sin888

The distribution of the angular location variables, 6 and  t!, is

a function of the spatial distribution of the scatterers. The probability

that an incremental volume, hV, at spherical coordinates  r,6, I!! contains

a point. scatterer is
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o   � cose!sine
�. 13!f 8,y;t!� 7r 2

2s f u   � cone!sineee
0 s 2

Expressions for the density, f 8,!,t!, for a constant scattering density

and a scattering layer are given below.

Case 1!:

constant density, v  d!
s 0

f 8,$;t! =
sinB �. 14!

Case 2!

scattering layer,

ifd<d
0

 d!
s

ifd>d
0 0

sin8

sin Bd8

sin8 �,15!

cos ' ,'!

if 8<cos

if 8>cos

if 6 < cos

if 8 > cos '
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The density function for 8 and g can be used to obtain the

2moments of the beam pattern weighting term, g  8, $!, which appears in
2

the expression for r t!. The second and fourth moments for g  8,$! for

a circular piston transducer and a constant scattering density are

evaluated in Appendix B.

The random amplitude factor, A, is a function of the target

strength of the scatterer. The target strength depends on the size and

structure of the scatterer and the angle of acoustic illumination.

Because of the many physical factors that can affect A, it is difficult

to obtain a general analytical expression for f  a!. The target strength

of individual fish for various species and various target angles have

been measured by Love [24]. While these measurements point out some of

the sources of variability, they do not provide a means of obtaining an

expression for f  a!. A technique for obtaining f  a! from the single

fish echoes is described in Chapter 5.

The Doppler shift density function is a function of the relative

motion of the scatterers and the acoustic source. The second order prop-

erties of the reverberation signal have been studied for several different

types of Doppler shift by Moose [6] and Swarts [25].

4 1.4 First Order Density Function

The probability density function of a sample from the scattered

signal,  r t!,t>0} can be written as an infinite series using �.46!.

If the transmitted signal is of duration T, the density function of a

sample of  r t!,t>0} at time t' is



tf k

[k f, TB x!dx] t
f r,;X ! = Z exp [- I I, >8 x!dr]f r,/k!

k=o kf
o t'-T

ifk=0

r t'! �. 17!-j   k!.t' +  t!.!
Z B. Re [f t'-r.! e ]

3.
if k > 0

where 8. is a random amplitude term that includes the effects of target
1

strength, beam pattern and losses. When the magnitude of the complex

envelope, f t!, is a square pulse, �.17! can be written as

if k = 0

r t'! = k

Z S. cos  n.t'+  I!.!
1 1

i=1

�. 18!

if k > 0

The density function for k = 0 with respect to M dr ,! is

�.19!f r,/k = 0! = 1

s Unless propagation losses are compensated for by a time-varying-gain amplifier,

the statistics of B. will be a function of time. Since we are concerned with the
1

density at a particular time, t', the time dependence has not been indicated.

where f r ,/k! is the density of r , conditioned on the occurrence of k

scatterers contributing to r t! at time t' and 8 t! = v  t!/X . The
0

received signal due to k scatterers can be written as
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where M dr ! is counting measure at r, = 0, that is
~ 7

tt

f f r,/k = 0! M dr,! = f r,/k = 0!

If it is assumed that the B. are independent, identically distributed
1

random variables, the characteristic function of r , given k scattererstl

can be written as

 u/'k! = f. I	 u!] k

tt
�.20!

where  I	 u! is the characteristic function of an individual term in the

sum in �.18!. That is,

0[ ju Boos et+ 0!]
1

�.21!

Using conditional expectations, �,21! becomes

[0   juB cos tot+ 0!!]
1 B |t!//B

27r[ 1 f juB cos ot r0!
B 2m o

�. 22!

' The concept of probability measure is often avoided in engineering literature.

Counting measure can be avoided by using delta functions. In this case, we would

write f  r, /k = 0! = 6  r, ! and use Lebesgue measure. For convenience, the delta

function notation will be used in the remainder of this dissertation.
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The integral can be expressed as a Bessel function  cf. [26], Eq. 9.1.21!

and

41  u! = EB PQ  uB! ] �. 23!

f b! =  ze b� �. 24!

Since the exponential distribution leads to an analytically pleasing

expression for the first order density, it will be used for f b! in the

remainder of this section. From {4.20!, {4.23! and �,24!, it follows

that

 U! = f Ue 3> ub!db =
2 2

Q h U

�,25!

The distribution of the amplitude variable, 8, must be specified to

evaluate the expectation in �.23!. There are two approaches that can

be used to obtain the distribution of B. One is to determine the den-

2sity of B from its contributing factors: the beam pattern term, g  9,$!,

the target strength term, A, and the losses. Additional data must be

collected and analyzed to obtain a valid model for f a! . The other

approach is to directly measure the distribution for B. Since f b! is

a function of the spatial distribution and type of scatterer, the density,

f b!, should be experimentally determined each time a particular scat-

tering environment is investigated. Jobst [27] has made measurements of

the echo strength distribution and found that the distribution of his

data resembled an exponential distribution. The density for exponent-

ially distributed B is
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and that

k

2 2 k/2
tl  a +u!

�. 26!

The corresponding density function is obtained by Fourier transforming

�. 26!,

1
- jur

t r,/k! = � f >  u/k!e du

CO k
1 a 22k/2cos ur!!du

 o' +u!
�. 27!

k+1 k-1

a 2 r, 2

Vm 2 2 P k/2! 2-
f  r,/k! �.28!

where K  x! is the modified Bessel function of the second kind of order
X!

The complete density function for r, for exponentially distributed

amplitudes is

tl

t r,:k ! = exp [ k f, d x!dx]d r,!
�.29!k k-1

[- k ft, TS x!dx] K k u!!/2 urt'!+ exp [- k f, Td x!dx]
k=1 k! !/mI' k/2!

Evaluating the integral  cf. [26], Eq. 9.6.25!, �.27! can be written as
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The density function, f r ,;A ! is plotted in Figure 4.2 for several
0

different Poisson intensities. The Gaussian density function is shown

for comparison. For high Poisson intensities the Gaussian density and

f 'rt,,'X ! appear almost identical. The difference between the Gaussian
t'' o

density and f r ,;X ! is better illustrated by the semi-logarithmic plot
0

in Figure 4.3. This figure shows that f r ,;X ! has heavier tails thant'' o

the Gaussian density. This heavy-tailed behavior of the first order

density function is present in all reverberation signals and is not

dependent on the assumed exponential amplitude distribution. This can

be shown by expanding the density in an Edgeworth series expansion  cf.

[6], Chapter 3!.

k

f r/k] = ,r", f J  r,x!  I J  B.x!dx �. 30!

where B. is the amplitude of the return from the i scatterer. If it.th

j

is assumed that the B. are independent, identically distributed, expo-
3.

nential random variables, the density in �.30! becomes

In many acoustic signal processing systems, the signal is envelope

detected before it is sampled. The density function of the sampled

envelope can also be represented by the infinite series in �.16! . The

density function for the sampled envelope conditioned on the presence of

k terms in the sum is a special case of the random flight problem [28]

originally considered by Lord Rayleigh. If r , is the sampled envelope

random variable, then
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Figure 4.3. Semi-logarithmic plot of reverberation first order
density function
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f r,/k! = r, f J> r,x][ f ee Je bxjdb] dx �. 31!

Evaluating the inner integral  cf. [29], Eq. 6.611.1!, �.31! becomes

J  r ,x!
rt'/k! = rt~~ o 2 2 k/2 dx

 v +x!
�. 32!

The complete density function, f r ,;X !, can be obtained using the above

expression in �.16!.



CHAPTER 5

SPATIAL DENSITY ESTIMATION

Introduction

The theory of Poisson intensity estimation and a mathematical

model for volume scattering were developed in the previous two chapters.

These results are now used to determine the structure and performance of

active sonar systems that are capable of estimating the spatial density

of volume scatterers,

Density estimates using independent samples from a reverberation

process are considered in the first part of the chapter. The relative

performance of various estimation techniques is determined. The remainder

of the chapter is devoted to a study of some signal processing techniques

that are presently being used to estimate the scattering density of marine

organisms. Expressions are obtained for the expected value and the mean

squared error of the estimate obtained with echo integration and echo

counting. A method for extracting the target strength distribution from

single scatterer echo amplitudes is discussed. The mean value of the

target strength is required to scale the integrator output and obtain an

absolute abundance estimate. The target strength distribution can also

be used by marine biologists to determine the size distribution of

organisms in the scattering volume.
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S. 1 Sampled Signal Estimates

The problem of estimating the intensity of a filtered Poisson

process using independent samples from the process was discussed in

Section 3.4. These results will now be applied to the reverberation

model developed in Chapter 4. The performance of the various sampled

signal estimates will be compared for the following model:

i! returned echoes are rectangular pulses with exponentially distri-

buted amplitudes,

N t!

r t! = g B. [u t-r.!-u t-t.-T !]cos wt+f,!
1 z l p 1

i=1

-abwhere' PB b! b>0

ii! constant Poisson intensity, V t!
0

iii! no noise in the received signal

The performance criterion used in this section is the normalized

mean squared error in the estimate of the density factor,
0

2
E[ X -X ! ]

0 0

2
When the estimate is unbiased, e = Var[A ].

This is the basic model used to study the first order density function of

the reverberation signal in Section 4.1.4. The assumption of a constant

Poisson intensity is not valid for most cases of interest. However, this

assumption greatly simplifies the analysis and the results obtained

illustrate the basic properties of the various estimation techniques.
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5.1.1 Sampled Echo Integrator

r t!
ls

SAMPLE AT

RATE = 1 / Tp

Figure 5.1. Sampled echo integrator

The mean and variance of I are
s

n

E[1 ] = QE[R. J
i~1

�. 1!

n n 2 2 n 2
Var[1 ] = Q Q E[R. R. ] g E[R. ]

i=l j=l j.=l
�. 2!

From the moment expressions in �.39! and �.47! it follows that

E[1 ] = Q A E[B ]T /22

i=1

= A nT /a
0 p

�. 3!

and

n

Var[I ] = g Var [Ri ]2

i=I

= 6nk T/v+2n A T /a4 2 2 4

0 p 0 p
�-4!

The block diagram of the sampled echo integrator is shown in

Figure 5.1. The envelope detector removes the carrier from the signal.
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If the parameter o is known, the sampled integrator output, I, can
s

be scaled to provide an unbiased estimate of A
0

I
s

0 2
nT /a

P

 S.S!

Since the estimate is unbiased, the variance and mean squared error are

equivalent and

2 Var[I ]
e s

> 2 <Z~, ~>2 ~n,T n �. 6!

5.1.2 Sampled Echo Counter

A block diagram of the sampled echo counter is shown in Figure 5.2.

1/nTpRATE = 1/Tp

Figure 5.2. Sampled echo counter

sampling interval, T , only a single echo is counted. Expressions for
P

the mean and variance of the estimated density, A., are given by �.37!
0

and �.38!. For the model in Section S.l,

The structure shown in Figure 5.2 is basically the same as the low density

estimator described in Section 3.4.1. The principal shortcoming of the

sampled echo counter is its inability to provide an accurate estimate in

high scattering densities. When two or more echoes occur in the same
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where

f r/k=0! = d r!

 k+1!/2  k-1!/2
a r

�, 1!/2 '�, 1!/2 "! 1 H 0&7[ 2  k/2!
�. 12!

and the bound on the normalized mean squared error is

2 Var[A ]
> jn1 E[ > [1nE [r [t.!;X !] }

j 0
0 0

 A T !

k=1nA � T +
2

0 p
AT!

f  r/k!

m AT!
k

a o P g ~~ f r~k!dr
k=0

�. 13!

One measure of the performance of an estimate of A is to compare
0

its mean squared error with the mean squared error of the estimate obtained

when all the echoes are resolvable. If k echoes are received in the time

interval  o,nT !, the optimum estimate of A from �.5! is
p 0

k
0 nT

P

�.14!

and the normalized mean squared error is

2 Var[A ]
e 0

A2 A2 AnT
0 o 0 p

�.15!
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The normalized mean squared error expressions in �.6}, �.10!,

�.13! and �.15! are plotted in Figure 5.3 as a function of the expected

number of echoes per sample, X T . The sample echo counter is the
0 p

optimum processor in low scattering densities  X T <.2 for the model
0 p

used in obtaining Figure 5.3!. On the other hand, in high densities

 A T >10!, the sampled echo integrator is the best of all the possible
0 p

processors that use independent samples from the received signal. The

choice of the signal processor is not so simple in the medium density

range  .2>A. T >10!. In many cases, the choice of the processor for the
0 p

medium density range will depend upon the required degree of accuracy.

The normalized mean squared error of the sampled echo integrator is

inversely proportional to the number of samples, n. Therefore, if an

unlimited number of samples are available, the sample echo integrator

could be used to estimate A to any accuracy. The sample echo counter
0

does not have this desirable property. For large n, the mean squared

error of the counter is determined by the bias term �.9! which does not

decrease with n. If only a limited number of samples are available and

if neither the sampled echo integrator nor counter provides the required

degree of accuracy in the estimate of A., then a more complex signal
0

proces.-or must be used. One such processor is the recursive estimator

that wL11 be discussed in the next section.

5.1.4 Recursive Estimation of X
0

A method for recursively estimating the intensity of a filtered

Poisson process was discussed in Section 3.4.3. Let r t ! be the n
th

sample from the process  r t!,t>0! defined in Section 5.1 and let A
n
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be the estimate of A at time t Then, the form of the recursive
0

n'

algorithm is

+ n C � !n f r r !,1! ~ Jd

n+1 n n dA n
�.16!

where

 /A T!
k

f r;I! = Q ~~, f r/E!
k=0

n 2

nE[ <> !n f r;1! ! ! ]
n

and whe re f  r/k! is de f ined in �. 12! .

The sampled echo integrator can also be written in recursive form

using �.69!.

 tn!2 0 �. 17!

where

a = Var/r  t.!]
2 2

It would be very difficult, if not impossible, to analytically

determine the finite sample performance of the algorithm in �.16!. The

performance can best be evaluated by means of a Monte Carlo simulation.

The two algorithms in �. l6! and �.17! were simulated for a sequence of

100 samples and a Poisson intensity of 2. The mean squared error in the

estimates was obtained by averaging the errors for a hundred different

sequences. The initial estimate, A , was determined from the first sample

as follows.



2
r  ti!

0 T
2

r p

�. 18]

It was mentioned in Section 3.4.3 that stochastic approximation

algorithms can be extended to independent samples from a nonstationary

process. The applicability of the recursive estimation algorithm to

nonstati.onary processes is essential in the problem of acoustic estimation

of scattering abundance. Recall from the model developed in Chapter 4

that the acoustic reverberation process is nonstationary because of the

increase in the cross sectional area of the acoustic beam with time.

5.2 Echo Integration

The echo integrator is a continuous time version of the sampledl

echo integrator described in Section 5.1.1. A block diagram of the system

to be considered is shown in Figure 5.5.

1 The performance of the echo integrator has been discussed in two papers by

the present author [10], [11]. The approach in this section is more general than the

previous analyses. However, the referenced papers have a more detailed discussion of

the effects of the various system parameters on the performance of the integrator.

The results of the simulation are shown in Figure 5.4. The 95't confidence

interval for the estimated mean squared error for the two algorithms is

shown at various points along the curves. The estimated error of the

recuzsive algorithm is less than the Cramer Rao bound on the variance,

This is due to the inaccuracy in the estimate obtained from the Monte

Carlo simulation which has used a finite number of sequences.
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0 RECURSIVE ALGORITHM
ECL . �16!

]OO804020

algorithms in Equations �.16! and �.17!

Figure 5.4. Monte Carlo simulation of estimation
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Figure 5.5. Echo integrator

The T.V.G.  time-varying-gain! amplifier equalizes the signals received

from scatterers at different depths. The range gate controls the depth

interval over which the scattering density is estimated.

5.2.l Single Pulse Analysis

The analysis begins with a special problem. the integration of

returns from a single transmitted acoustic pulse. From �.5!, the re-

ceived signal at time t is

N t! - X Ct

r t! = p A g �.,$.! 2 G t!Re[f t t !e c Di i ] �,]9!
i=1  ct/2!

where G t! is the time varying gain function of the T.V.G. amplifier. The

other parameters have been defined in Chapter 4. The output of the

integrator for a single transmitted pulse can be represented by
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! =f [r E!] Er �.20!

The performance of the echo integrator can be determined from the

expressions for E> and Var> which follow from2

E  = E[ ] = f E[]r n! ]an �. 21!

'2 '2
Var! =   ar[I] = f f  E[]r n! ] ]r E! [ ]

t1 t1

- E I I r  u! ~ ] E [ I r  8! ~ ] !do[dan �.22!

by interchanging the order of integration and expectation. The moments

of ~r tI~ that appear in �.21! and �.22! which are evaluated in2

Appendix C are

E f[r n! [ ] = f v r!E  a n,r,B! ] !dr
t1

 S. 23!

z The integration time is usually long compared to the pulse length. tJnder

these conditions, the total integrator output can be approximated by a sum of sta-

tistical!y independent components and is approximately Gaussian distributed because

of the central limit theorem, A Gaussian random variable is completely characterized

by its mean and variance. Therefore, E and Var contain all the information nec-

essary to statistically characterize the estimate obtained using the echo integrator.
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min  a,g!= f ~«>a<i-.<...,e>i'i-.<g. e!l'>

min  a, 5!
2

+ 2 u T!E[z  a,v,O! z  8, T,8!]dt'

n a,9!
2

+ 2 u v!E[z  a,t,G! z  S,v,8!]dr

in a, 8!
2

+ 2 u T!E[z  a,Y,G!z  g,w,O!]dr

min a,g!
2

+ 2 v  x! E [z  a p T p 8! z  8, T, 8! ] dv �. 24!

where

z t,T,8! = z  t,~,O! - jz  ,,6!

and

,«�,, �. « ~>]A 2 8 e-aoct t+

 ct/2!

8 e 0 t+

 ct/2!
�. 25!

Cov[lr a! I '. lr S! I '] = E [I r a! I 'Ir�! I ']-E [Ir a! I ']E [Ir S! I ']
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2='E[ r a! ] ] = f u r!E[i  a,r, !!]dr �.26!

pin u,g! 2 2
 I  u! I'I  e! I'] = J ~ ~!E<-z, .,~,8!-., S...O»d.

tl

min u, I!'! 2

+ 2 s T!E[z  u, T,O!z  g, T,Q!]dr
tl

�. 27!

For simplicity, �.26! and �.27! are used to obtain expressions for E<

and Var . The derivation for a complex f t! and asymmetric Doppler dens-I'

tiy function is rather involved because of the number of terms that must

be retained. From �.25!, � ~ 26! and �.27! and the assumed uniform

distribution of the random phase variable ]t], it follows that

E 2 4 0 -2uoctGE[[r a! ] = "' ' ', ' ""' f c r!E' a-r!« E.2E!
2  cu/2! tl

Cov[~r u! ~ Ir g! ] ]2 2 E A  e,[I!! G  u!G  8!e

4 cuo/4!

min u,8!
E[!+ccs[2a  a-E!}] f v r!E  a-r!E  E r!dr

tl

1 2 4 G G 8 -uoc u+g!
Et:A g {e,[I! cos MD u-8!]]

 cug/4!

min u, g!
2

f c r!E a-r!E S-r!dr
tl

�. 29!

When the envelope of the transmitted signal, f t!, is real and the density

function of the Doppler shift variable [0 is symmetric about zero, the
D

complex envelope, z t,T,8! is real and �.23! and �.24! simplify to



i! rectangular pulse, f t! = u t! - u{t-T ! where u t!
P

is the unit step function and T is the pulse length.
P

ii! no Doppler shift, u!D = 0

iii! t2-tl>>T and tl»T
2 1 p 1 p

Xmct
iv! uniform spatial density, v t! = 0

v! T»2xje
P

vi! attenuation losses are negligible  o'. =0! and G t!=t o.
0

The expressions for Vari and EI with these assumptions are

E[A g  8,$!]kT [t2 tl !
�.30!E

I 2 �g -1!
0

E[A g � g]T k[t go t go ]
4�g,-s!

Var
I

 E[A'g  O,y! j!'k'T '[t 'go '-t go '~
+

�. 31!
6�g -3!

' The steps leading to these results are contained in [10]. 'Ihe previous
analysis assumes an ideal elliptical transducer beam pattern.

The mean and variance of the integrator output can be calculated

using �.28! and �.29! in �.21! and �.22!. In the general case, the

expressi.ons for E and Var must be numerically evaluated. Closed form

exp'ressions can be obtained by making the following assumptions:
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where

X mc
3

k =
4

It is reasonable to assume that the target strength random vari-

able, A', and the beam pattern random variable g 8,4! are uncorrelated.

The evaluation of the moments of g 8,$! is considered in Appendix B.

2The density function and moments of A can be estimated by the method

discussed in Section 5.4. The integrator output can be scaled to pro-

duce an estimate of X after E[A ] and E[g  8, !!] have been determined.
2 4

0

0 �. 32!2 go- 1 2go- 1!
E[A ]E [g  8,<f>! ]T  c/2!

P 2go-1

and the assumption that A and g 8,$! are uncorrelated, it follows that

Var I E [A ] E [g  8, $! ] � go 1! [1  ti/t2! ]

E  E[A ]E[g  8, $!]! �g -5!kt2 [1- t /t2! o ]

2�g -1! T [1- tl t2 o ]
�. 33!

The relative size of the mean, E<, and the variance, VarI, can

be determined by normalizing the variance with E . From �.30!, �.31!
2
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5.2.2 Multiple Pulse Analysis

The results of the previous section can be generalized to include

integration of returns from multiple soundings. Define IT as the inte-
grator output after the integration of the returns from N pulses. Then

P

I = I + I + ... + l

p
�. 34!

where I, is the integrator output for the j pulse. If it is assumed.th

j

that the scattering density is constant for all N pulses and that each
P

pulse is range gated to the same interval, then

E[IT] = N EIT p I �. 35!

and

Np Np
Var ITj = N Var I + p g Cov[I.,I.]T p I

i=I j=l
i' j

igj

�. 36!

t t2 2 2 2cow[ ,. .] = f J fs[l~,. u] I I~. s] I ]

�. 37!

If a new volume of water is insonified with each acoustic pulse, the

returned signals, r. o[! and r. 8! are independent and
3

The covariance term in �.36! can be written in terms of ~r.  m! ~ and
1

!r.  9! !, the envelopes of the returned signal for the i and j pulses..th .th
7



Cov[I.,I,] = 0

Var [IT] = N Var I
T p

To evaluate �.36! for overlapping volumes of water, the re-

turned signals can be split into two parts as follows,

where r .  m! and r .  l3! are produced by scatterers in overlappingoi oj

volumes of water. Since r .  u! and r . �! are produced by returns
ni nj

from nonoverlapping volumes, they are independent and do not contrib-

ute to Cov[I.,I.]. Using the assumed spatial Poisson distribution fori' j

the scatterers, it follows that r .  <x! and r .�! are filtered Poisson
Oi 03

processes with intensity function

A cA..  t!
v {t!

0 2

where A.. t! is the cross sectional area of the overlapping volume for
13

.th .th
the i and j pulse at time t. An expression for A.. t! in terms of

1,3

the phys. ical parameters of the system for an ideal ellipticaL beam is

derived:in Appendix D.

Assume that the same scatterers are present in any given volume

over a period of several transmission pulses, The positions of the
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t2 �2 E[A, A. g, �,$!g.  8,$!]
Cov[I.,E.] = J

3 tl tl

u'go S'go r.. o S T !d dg
3.! p

�.40!

where

min a,g!!, C
>;  o,E,2! = I A, t!

1 �. 41!

 u a-v!-u m-v-T ! ! u g-T! -u f3-T-T ! !dz
P P

Further assumptions must be made to obtain a closed form expression for

Var[I ]. These assumptions and the resulting expression are contained in

a paper by Moose and Fhrenberg [10]. This paper also considers the effect

of the various system parameters on the performance of the integrator.

scatterers relative to the beam pattern can be expected to change and

these changes are assumed to cause the phases of the signals for different

pulses to be unco~elated. The expression for Cov[I.,I.] is evaluated byi' j

means similar to those used in the single pulse analysis. The resulting

expression for the six assumptions used in the single pulse analysis is
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5.2.3 Effect of Noise on the Integrator

The analysis in the previous two sections has assumed that only

the signal reflected by the scatterers is present at the output of the

transducer. In practice, the transducer output will also contain noise.

t2

  = f [r t!+n t!] dt2

tl

t2

[r  t!+n  t!+2n t!r t! jdt
I' 2 2

�.42!

The quantities of interest are again the mean and variance of I. As-

suming that r t! and n t! are zero mean and statistically independent,

it follows that

E = f  E[r  t!]+E[ n t!]!dt
tl

�. 43!

and

Define n t! as the noise process at the output of the T. V.G.

amplifier. If n t! and r t! are assumed to be narrowband processes with

real envelopes, the integrator output for a single acoustic pulse can be

written as
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Vari = J J  Cov[n  e!,n  8!]+ Cov[r  ct!,r  8!]2 2 2 2

tl tl
�. 44!

+ 4E [r e! r 8! ]E[n m!n 8! !dud8

The mean and covariance of the squared reverberation signal, r  t! are2

defined in �.30! and �.31!, The joint second moment of r t! can be

obtained from  A. 12! and �. 25!,

E[A g �,$!]G o!G 8!costu  e-8!
2 4

E [r ~! r 8! ]�

-~c o,+8! min <x,8!
f u T!! u-v! f 8-t!dT

 cu8/4!
�, 45!

�.46!

The statistical properties of the noise process must be specified

to evaluate the moments of n t! that appear in �.43! and �.44!. The

ambient noise in a sonar system usua11y consists of radiated signals from

several independent noise sources [30]. It follows from central limit

theorem arguments that the amplitude of the ambient noise is Gaussian

distributed. The noise at the output of the bandpass filter, n  t!, will
0

be assumed to be stationary with a flat spectral density within the band-

pass. The assumed spectral density of n  t! is shown in Figure 5.6. The
0

autocorrelation of n  t! is obtained by inverse Fourier transforming
0

s  f!,
o
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'0

Figure 5.6. Filtered noise spectral density

W~� 1

T P �. 47!

Therefore,

2n sin2mv/T
R  vj = cos2mf v ~>n T 0 27I'T/ T

0 P p
�.48!

2The noise process at the input of the integrator, n  t!, is
related to n  t! by

0

n  t! = G  t!n  t!
2 2 2

�.49!

Therefore,, the moments of n  t! in �.43! and �.44! are2

EIn  t!] = G  t!Ejn  t!]

Cov[n  a!n  9!] = G  a!G  9!CovIn  a!,n  l3!]2 2 2 2 2 2

�, 50!2 In a!n B! ] = G a! G 8!R  a,g!
0

For a pulse of length T, the filter bandwidth and the pulse length are
p

approximately related by
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E[  t	 = �  o! �.51!

Cov[n  a!,n  9!] = 2R  Q,B!
2 2 2

0
�. 52!

From �.48!, �. 50! through �.52!, it follows that

E[n  t!] = G  t
N /T �. 53!

N

Cov [n  a!, n  8! ] = G  a! G  8! 8 � cos 2m f v2 2 2 2 0 2

P

2

�. 54!

The following expressions for the mean and variance of the integrator

output for a reverberation signal in noise are obtained from �,30!,

�.3I!, �.43!, �.44!, �.53!, �.54!, the six assumptions in Section

5.2.1 and the assumption that A and g 8,$! are uncorrelated.

E[A ]E[g �,$!]kT [t2 -tl ]
2 �go-1!

2N  t 2go+1 t2go+1!
0 2 �.55!

T �g +1!
P

The first and second moments of a square law detected Gaussian process

are  cf. [l], pp. 253-255!
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E[A ]E[g {8,$!]T k[t2
4�go-5!

 E[A ]E[g  8,$!]! k T [t

6�go-3!

N 2 t go t go+ !
+8m o 2 1'" T �. 56!

b =E[X -X]
I o o

� ' - I ' ! go- !
�.57!

 t2 -tl ' !�go+1!E[A g  8.4!]  /2!
P

The normalized mean squared error in the estimated density, eI, is2

2»r[~o] +  E[~ � ~,]!
I 2

0

E[A ]E[ �,$!]� -1! [1- t jt ! ]

 E[A ]E[g  e,k!]! �go 5!kt2 [1  tl/t2! ]

It was shown in Section 5.2.1 that in the absence of noise, the

integrator output could be scaled to produce an unbiased estimate of X
0

This is no longer the case when the received signal contains ambient

noise. An expression f' or the bias is obtained using �.32! and �.55!



91

2 �go 1 ! T [1  t 1/t2! ]
+

3 �gP 3! t2 [   1/t2 ]

32'IIN {2go-1! t2 [1  tl/t2! ]2 2 3 4g +1

+ �. 58!
�go+1!  E[A JE[R �>4! j! [I-  tl t2

where b. is defined in �.57!. The normalized variance of' the integra-

tor output in the absence of noise could be reduced by shortening the

length, T  cf. Equation  S.33!!. However, shortening the pulse length
P

results in a wider bandwidth and increases the contribution of the

ambient noise to the mean squared error  cf. Equation �,SS!!.

5.3 Echo Counting

The echo counter is the continuous time version of the sampled

echo counter described in Section 5.1.2. A block diagram of the echo

counter is shown in Figure S.7. The threshold device eliminates low

level noise and amplitude variations from the signal.

5.3.1 Single Pulse Analysis

N  t!

e t! = g B.tu t-t.!-u t-T.-T !]COS IDt+|!.!
3. 1 p l

i=1

{5. 59!

]:f the transmitted signal is a gated sine wave of duration T . the
p

signal out of the T.V.G. amplifier can be written as
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Figure S.7. Echo counter

.thwhere B. is the amplitude of the i echo, N t! is a nonhomogeneous
1

.th
counting process with intensity v t! and t. is the time at which the i

l.

echo appears at the counter. The output of the threshold device, e  t!,0

is le t!  
�. 60!

1 e t! I <

The process, e t!, can be split into two parts

where



NA t!

A t! = g SA. [u t-tA.!-u t-tA.-T !]cot ut+P,!'=l A3 A3 A3 P Aj

NB t!

e> t! = g B>t]u t-'rtt!-u t-ttt-T !]cos [et+/ t!
Bk

such that e  t! contains only echoes whose amplitudes are above the
A

threshold, T, and eB t! contains echoes whose amplitudes are below T.

N  t! and N  t! are nonho]]]ogeneous Poisson counting processes with in-

tensities vA t! and vB t! defined by

VA t! = v t!PIB >T]

VB t! = V t!P[B < TJ �. 62!

'I'he number of echoes registered by the counter for a single

acoustic pulse is

NA  t!

c t>! = g x. t .,t!
i=l

 S. 65!

" 'Ihis assumption is an oversimplification of the effect of the envelope

detector and the threshold device. In a previous analysis [ll], the problem of the

threshold was avoided by assuming an ideal transducer beam pattern with constant

intensity within the beam. All the scatterers insonified by the ideal beam were

assumed to have echo levels greater than the threshold.

It will be assuaed that the signal at the output of the threshold device

is due solely to eA t!."
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where

if counter unlocked at TA.
Ax

x  TA t!

if counter locked at tA.
Az

The counter will be locked at tA. if
Az

�. 64!

t2
E[C t2!] = J v {t!E[x{t t!]dt

1

Var[C{t !] = J  t!E[x  z,t!]dT
1

�.65!

The first and second moments of x T,t! are easily evaluated

E[x T,t!] = E[x  q,t!]
2

1 P [counter unlocked at time v]

= exp f � f v  x!dx]
P

= exp [ -v  T!T j
A p {5. 66!

.'he output of the counter, C t2!, is a filtered Poisson process

and its mean and variance can be determined from the characteristic func-

tion derived in Theorem �.7!. The resulting expressions for E[C t !]

and VarI~C t2!] are  cf. [17], p. 156!
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-u  T! T
E[C t2!] = Kar[C t>!] = f u  t!e

1  S. 67!

When the scatterers are uniformly distributed in the insonified volume,

A ! =XK 2

o C

where

3 CO

f E b! db [L5. 68!

2-tkKT2

E[C t !] = Var[C t !] = X K f t e Edt2 2 oCtl �.69!

In low .patial densities,

-zXKT
2

o C p

and the counter output is proportional to the density factor, X . There-

fore, u ing the low density assumption, the estimate of A. is
0

C t !

K  t -t !/3
�. 70!

The last approximation assumes s  T! is nearly constant over a pulse length,

T . It follows that
P
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The bias in the estimate is

bC ~~~ j �. 71!
3 3

2 I

The normalized mean squared error of the estimate A is
0

t -T XKTK T
3 xe d~

1 �. 72!
3 3

2 1

5.3.2 multiple Pulse Analysis

The total count registered by the counter, CT, after N acoustic
P

pulses is

C = C + C + ,. ~ +C
N

P

�. 73!

where C. is the number of echoes counted on the j acoustic pulse. The
.th

estimate of A assuming a constant spatial density for all N pulses is
0 P

�. 74!

Processi.ng the returns from several acoustic pulses does not reduce the

bias obtained with the echo counter. The normalized mean squared error

after N pulses is
p

b +v [x]2 2 ~

0 0

t22~AKT2
~e

tl

2 t -zXKT
2

9/22 oCPdx e d~

1 + 1
K  t -t !

CT

NK  t -t !/3
p C 2 1
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2c C b +Var[A j b2 2 2
0

A
2 2

+

0 0 ANK  Z -t !
a apC 2 I

N N

gE c c.l- z c,]Etc.!
1 7

2
bc

+

0

3 N Var [C t2! ]
p[ N KC t2 -tl !opC 2 I

N N

+ Cov [C.,C.]
1 7

i=1 j=l
ipj

�.75!

where b and Var[C t2!] are defined in �. 7l! and �. 69! .
C

If a different volume of water is sampled with each pulse, Cov[C.,
3.

C.]=0 and
7

2 2
e b

+

0 0

2

Var [C  t2! ]
C '2

�. 76!

Evaluation of the covariance term in �.75! for overlapping sampled volumes

is very difficult unless some further simplifying assumptions are made. An

ideal beam pattern with constant intensity within the beam was assumed in

a previous analysis [ll]. The interested reader is referred to Reference

ll for the overlapping volume analysis with this assumption.



The relative performance of the echo integrator and echo counter

is illu trated by the following example.

Example �.l!:

Physical model:

i! constant spatial intensity,
0

ii! target strength variable, A, is Rayleigh distributed

2

f a! = �,a -a /2a
A

a>0

iii! negligible absorption, m = 0

iv! no ambient noise

v! sound velocity in water, c = 1500 m/sec

System parameters:

i! surveyed depth interval = 10-40 meters

ii! T.V.G. gain factor, g = 2
0

iii! pulse length, T = 1 msec
p

iv! number of pulses, N = 400  no overlap!
p

v! circul'ar piston transducer with d/X=6 � dB beamwidth

Qf 11.5

vi! counter set to detect all scatterers in the region

where g  8,$! > -15 dB.
2

2 220
 E[g  8,4!]!

The beam pattern moment ratio which is obtained from the curves in Figure

Bl is
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and the target strength moment ratio is

= 2

 ~IA 3!

The probability of counting a single target is obtained by integrating

the beam pattern density function derived in Appendix 8,

1
f b!db = J f ;  !< : = .O 8

T .001

The normalized mean squared errors for the echo integratox and echo

counter for the above set of conditions is plotted as a function of X0

in Figure 5.8. The normalized mean squared errors in Figure 5.8 have the

same characteristics as the corresponding sampled process error curves

shown in Figure 5.3. At low densities, the mean squared error of the

integrator and counter decreases as 1/A . For these densities, the indi-
0

vidual echoes do not in general overlap and the principal source of vari-

ance is the variability of the scattering density about its mean value.

In this region, the echo counter has a lower error since it is not

affected by variations in the echo level.

5. 3. 3 Effect of Noise on the Counter

The echo counter like the echo integrator is adversely affected by

ambient noise. An extraneous count will be recorded when the envelope of

the noi e process exceeds the threshold level, T. In this section, ex-

pressions will be derived for the mean and variance of the counter output

when the input to the transducer is Gaussian distributed ambient noise.
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Assume that the threshold is set such that the mean time between

counts due to the ambient noise is much greater than the correlation

time of the noise process. In this case, the number of times the noise

process exceeds the threshold can be approximated by a Poisson process

5with intensity v  t! given by
n

�. 77!

where

and R  t,t+t'! is the autocorrelation function of the envelope of the noise

process arocess at the input to the linear detector. In order to evaluate the

noise envelope correlation function, assume that the noise at the output

of the bandpass filter has the spectrum shown in Figure 5.6. The time

varying gain amplifier  T.V.G.! changes the height of the noise spectrum as

a function of time. If the T.V.G. gain function, G t!, is slowly varying

relative to the correlation time of the noise, the height of the spectral

density at time t is G  t!N and the autocorrelation function is
0

The expression for v  t! is derived by Helstrom  cf. [3l] pp. 253-257!.
n

Helstrom's analysis is Used to obtain an expression for the probability of error

in a radar system. a problem closely related to the problem treated in this section.
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R  t t+z! - G  t!N ~ ~f df
-W

�.78!

It follows that

R  t,t! = 2G  t!N W
2 �. 79!

-8G  t!N W 71'
R " t,t! = �. 80!

4G  t!N
e 0 �. 81!

The intensity, u  t!, is plotted in Figure 5.9 as a function of the
n

threshold to noise ration, R, defined as

2

R- YYar n t� �. 82!
2N WG  t! 2N G  t!

2

Recall that the Poisson assumption was based on the condition that the

mean time between counts is much greater than the correlation time of the

process. In terms of u  t! and T , this condition is equivalent to
n p

1

 t! p
n

�. 83!

The following expression for s  t! is obtained from �.77!, �.79!, �.80!
n

and the approximation that W = I/T .
p
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Figure 5.9. Intensity of noise induced counts
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For R > 9 dB and  I/u  t!! > 10 T, the Poisson model is a good approxi-

mation to the distribution of the noise produced counts.

Expressions for the mean and variance of the number of counts,

C  t ! produced by the noise in a time interval  t ,t ! follow directly
n 2

from the properties of a nonhomogeneous Poisson process  cf. �.12! and

�. 13! !,

t2
E[C  t3	 = var [C  t>!] = J ~  t!dt

1

�. 84!

for uniformly distributed scatterers is used, the noise induced bias in

the estimated density is

C  t2!b � n 2
K  t -t !/3

�. 85!

where K, is defined in �.68!. The ratio of noise induced biases for the
 :

integrator and the counter is a measure of the relative effect of the

ambient noise on the two estimation techniques. The ratio, b /bI, which
n

is obtained from �.57!, �.81! and �.85! is

T'T

2 4Not4
5vvrTT E[A jE[g  e, I!! j J

'n t
 S. 86!

bI 4y3N  t -t ! j f b!db

where u  t! is defined in �.81!. The density estimate for the counter
n

is obtained by scaling the number of recorded counts. If the scale factor
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Equation {5.86! has been evaluated for the assumed set of operating

conditions in Example �.2!.

Example �.2!:

Parameters:

i! surveyed depth interval = 10-40 dieters

ii! circular transducer with d/A. = 6

iii! target strength term, A, is a constant

iv! sound velocity, c = 1500 m/sec

The definition of the threshold to noise ratio, R, will be modified as

follows to account for the changing noise spectral density with time.

2 T'T
{5.87!

Var [n t! ] 2N EIG2 t!]
0

where E[G  t!] is the average gain of the T.V.G. for the surveyed depth2

4
interva,l. The fourth moment of the beam pattern term, E[g  8, I}!] is ob-

tained from Figure Bl. Since the target strength variable, A, is assumed

to be constant, the integral of the echo leve1 density function, f b!,

can be expressed in terms of the integral of the beam pattern density

function, f  g! CO
1

J f b}db = f f< g}dgT T2/A2 '

where fG g! has been derived in Appendix B. A plot of the bias ratio,

b /b>, as a function of threshold to noise ratio and threshold setting
n

relative to A is shown in Figure 5.10.
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0

,01
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Figure S.10. Comparison of bias errors in integrator and counter
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5.4 Target Strength Density Function Estimation

A technique for making an in situ estimate of the density function

2of the target strength variable, A, is discussed in this section. The
2

density function can be used to evaluate the moments of A which appear

in the expression for the mean and variance of the integrator output.

The target strength density function can also be used to estimate the

scatterer size distribution within the surveyed population, Another

method for obtaining the target strength distribution has been proposed

by Craig and Forbes [8]. Their technique is physically motivated and

implicitly assumes that the scatterers are uniformly distributed in

space. The method described in this section is statistically motivated

and can be applied to any spatial distribution.

The estimate of the target strength density function is obtained

in two steps. The first step estimates a portion of the density function

of the integrated echo level, A g  8,$!. The partial integrated echo2 4

level density function is then used to evaluate the density of A . A
2

block diagram of the system used to obtain the single scatterer inte-

grated .cho level, I., is shown in Figure 5.11. The time varying gain
l.

function of the T,V.G. amplifier is adjusted to cancel all propagation

losses. The threshold device represents the inability of the single

target recognition circuit to distinguish signals whose integrated echo

2 4
level, A g  8,$!, is smaller than a certain level, T. If all the single

echoes could be distinguished, it would be possible to estimate the

2 4
moments of A g  8,$! directly. However, a large percentage of the total
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number of single echoes are from scatterers located in the low gain

portion of the beam pattern and fall below the threshold.

ln order to simplify notation, define the random variables G and

A as follows
0

A = A
0 �. SS!

with density functions f  g! and fA  a!. An expression for the density
0

of G in terms of the directivity function of the transducer and the

spatial distribution of the scatterers is obtained in Appendix B.

The relationship between the density functions for G and A and
0

the density function of I, the echo level random variable, can be found

using elementary probability theory  cf. [33], p. 205!.

C f � f<  a! f [i/a! da
0 0

1 T

�. 89!

i<T

where C , a constant that depends on the threshold level T, insures thato

f i! integrates to l. The directivity function g 8,$! and consequently

the random variable G are contained in the interval [0,1]. The random

The single target recognition circuit is the most difficult

portion of the system to implement. Two possible circuits are discussed

in Appendix A of reference [32].
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as

A

c f � f  a!f  i/a!da i>T
1 0

�. 90!f i! =

since fA  a! = 0 for a>A and f  g! = 0 far g>1. Equation �.90! is a
0 max G

Volterra integral equation of the first kind for the unknown function

fA {a!. For the general class of real functions, this type of integral
0

equation does not have a unique solution, However, the equation has a

unique solution within the class of positive real functions. This fact

is easily shown in a proof by contradiction.

The target strength density function estimate is obtained by

numerically solving the integral equation �.90! . The following proce-

dure is one of the many methods that can be used to solve an integral

equation. Some other techniques are described in reference I34].

The unknown density function is first approximated by an nt.h

degree polynomial,

n

= � PC .a'I

A C j
0 0 j � l

�. 9l!

With this representation for the unknown density, the integral equation

becomes

�.92!f{i! = QG B {4A !
j=0

variable A is finite and can be assumed to be contained in some inter-0

val IO,A ]. Using these intervals for A and G, �,89! can be rewrittenmax 0
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where

A

g.  i,A ! = f a f  i/a!da
1

and where f i! is an estimate of the density function for I. The maximum

raine of the target strength gensity, A , is not known a priori. Itmax '

can be estimated by the greatest single scatterer integrated echo level,

max I.! . A Monte Carlo simulation has shown that the choice of A does1 max

not greatly affect the estimate of fA  a!. The unknown coefficients, a.,
0 7

in �.91! are evaluated by a least squares fit of the functions 8. i,A !j ' max

to be estimated density, f i!. The normalizing coefficient, C , in  S.91!
0

is chosen such that fA  a! integrates to l.

The procedure described above has been investigated using a Monte

Carlo simulation. Random variables, I, representing the integrated

squared echo values were generated by taking the product of a beam pattern

variable, G, and a target strength variable, A . The distribution for G
0

was derived assuming a piston transducer and a uniform spatial distribution

of the scatterers producing single echoes. A number of ways of estimating

the echo level density, f i!, were investigated. The technique which

worked the best was to estimate f i! by the derivative of a least squares

polynomial approximation to the empirical distribution function of I.

The results of the Monte Carlo simulation of the density estimation

technique are shown in Figure 5.12. The target strength variable, A ,0

was lognormally distributed for the simulation. That is,

�.94!

where y was a Gaussian random variable. The mean and variance of y were
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3 and .36 respectively. The order of the polynomial fit to f i! was

7 and the degree of the polynomial approximation to fA  a! was 4. Three
0

hundred samples were used to obtain the density estimate.



CHAPTER 6

CONCLUSIONS

,.he purpose of this dissertation has been to develop methods for

statistically estimating the intensity factor of a filtered Poisson process

and to use the methods developed to determine the structure and analyze

the performance of signal processors that estimate the spatial density of

marine organisms. In this chapter, the principal contributions of this

research are reviewed and some problems requiring further investigation

are suggested.

6.1 Principal Contributions

The application of statistical estimation theory to Poisson counting

processes is not new  cf. [35], chapters 2 and 3! . However, the problem

of estirriating the intensity factor of a filtered Poisson process has not

been treated previously. Therefore, the theoretical development in Chapter

3 is one of the main contributions of this dissertation. Because of the

wide usage of digital techniques, most signal processors operate on samples

from the signal of interest. For this reason, the sampled process inten-

sity factor estimators derived in Section 3.4 are not only of theoretical

interest but are of practical importance.

Previous authors [3], [4], [6] have used a Poisson distribution of

point scatterers as a model for reverberation. These authors, however,

did not take advantage of the many mathematical properties that can be

derived when the received scattered signal is described in terms of a



filtered, Poisson process. For example, Moose [6] has only shown that the

first order density function of reverberation is asymptotically Gaussian

as the scattering density goes to infinity. Using the theory developed

in Chapter 2, it is easily shown that all order densities are asymptoti-

cally Gaussian.

The expression for the reverberation process first order density

function derived in Section 4.1.4 is a new result. The common approach

used previously has been to use the Edgeworth series expansion for the

first order density function. While this former approach allows one to

easily show that the density is asymptotically Gaussian, it does not pro-

vide any insight into the form of the density function for low scattering

densities.

Chapter 5 contains the most practical contributions of this

dissertation. Nearly all the material in Chapter 5 is new and cannot be

found elsewhere except in other publications by the present author. The

results of the Monte Carlo simulation of the sampled process recursive

estimator in Section 5.1 show that the mean squared error of the intensity

factor estimate is, in some cases, significantly lower than the mean

square errors produced by the two commonly used techniques of echo count-

ing and echo integration.

The echo integrator and echo counter error expressions derived in

Chapter 5 can be used by the marine biologist in planning an acoustic

assessment survey. If there is some prior knowledge of the approximate

density of the species to be surveyed, the two error expressions show



116

which t chnique is superior and provide the biologist with a means of

determining the amount of acoustic sampling required to obtain the desired

degree of accuracy.

The target strength density function estimation technique described

in Section 5.4 is more general and more accurate than the commonly used

technique which was originally proposed by Craig and Forbes [8].

6.2 Topics for Further Study

There are a number of unsolved problems related to the research

reported in this dissertation. Some of these problems are cited in this

section.

The recursive estimation algorithm which uses independent samples

from the reverberation process has a significantly smaller variance than

either the echo counter or the echo integrator for medium scattering

densities  see Section S.l,4!. However, a number of assumptions were made

in evaluating the performance of the recursive algorithm. The sensitivity

of the performance of the algorithm to these assumptions should be investi-

gated, Some of the factors that should be considered in the study are:

 I! the effect of differences in the form of the assumed and actual echo

level density function; �! algorithm performance for a process generated

by a non-Poisson spatial distribution; and �! convergence of the algorithm

when parameters besides the intensity factor must be estimated.

This dissertation has dealt with the problem of estimating the

multiplicative factor of a known intensity function of a filtered Poisson
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process. A natural extension of this research would be to allow the

intensity function itself to be a stochastic process. Poisson processes

with stochastic intensity functions are called doubly stochastic Poisson

processes. The theory for this type of process is still in its early

stages of development and to date no results have been published on

doubly stochastic filtered Poisson processes.

It is shown in Chapters 3 and 4 that the echo level density function

must be known to obtain a complete statistical characterization of the

reverberation process. Since little is known about the statistics of the

echo level or target strength of marine organisms, some assumptions were

made before the mathematical model for reverberation was completed.

Target strength and echo level data for difference sizes and species of

marine organisms need to be collected so that accurate statistical

models can be constructed.

l'n the practical application of acoustic techniques to fisheries

resource assessment, the marine acoustics group at the University of

Washington has found that the effect of background noise is almost

negligible. For this reason, this dissertation has not considered the

problem of optimally estimating the intensity of a filtered Poisson pro-

cess received in the presence of noise. However, there are other appli-

cations of the filtered Poisson process model where background noise is

significant. The problem of optimal intensity estimation in the presence

of noise is important in these cases and should therefore be further

considered.
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The validity of the point scattering assumption is questionab1e

in high scattering densities. Both analytical and experimental studies

should be conducted to determine the effect of multiple scattering as a

function of the spatial density of various types of marine organisms.
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APPENDIX A

MOMENTS OF A FILTERED POISSON PROCESS

 u,u ! = f g exp [jx u - jx u ]dF x,x !
l' 2

 j ]!  j 2!
t
rs r

r,s=0
 A. I!

 jul!  j u2!
exp Z k

rs rt Se
r, s=l

 A. 2!

where p' is the rs bivariate moment and k is the rs bivariateth th
rs rs

cumulant. It follows from  A.2! that

r+s

3u Bu l' 2
u = u = 0

I 2

 A. 3!

Formulae that express the moments in terms of the cumulants and vise

versa can be obtained from the characteristic function. The following

relationships apply when XI and X2 are zero mean

2 IE[X j -p' =k  A. 4!

' The material in the first part of this appendix has been taken from Volume 1

of Kendall and Stuart [cf. {12] Chapter 3! .

The following relationships between the bivariate characteristic

function, the moments and the cumulants are used in this appendix. The

joint characteristic function of two random variables, X] and X2 is

defined as
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4, 2E[X j = M 40 = k40 + 3k20  A.5!

 A. 6!E[X X ] = ] 'll � k

1 2 22 22 20 02 11  A. 7!

The bivariate characteristic function of two samples, r tl! and
r t2!, taken from a filtered Poisson process is  cf. Theorem �. 7! !

r 1 j lz tl X8!r t !  "l,u2! � exp J u x!E[e

!U Z t, X~Q! ju z t,x,8!
e - 1]dx + v x! e dx  A. 8!

where t2 > tl. The following expression for k  r tl!,r t2!!, the rsth
rs

cumulant of r tl! and r t2!, is obtained from  A.3! and  A.S!.

t >r+s
t  r t!!.r t~!! = j fe u x! r z dz z  uy ~ u2!rs 1' 2 Bu Bu 1' 2

1 2
U =u =0

1 2

2
t >s+ f V x! y  Ou!tl S zip z2 2U2

 A. 9!

u = 0
2

where  t!  u,u ! is the joint characteristic function of z tl,x,O! and
1' 2

z t,x,8!. When r t! is a zero mean process, it follows from  A.4!

through  A.7! and  A.9! that

E[r  t!] = J v x!E[z  t,x,6!]dx  A.10!

t 2

E[r  t!] = f v x!E[z  t x 8!]dx+ 3 f u x!f [z  t xF!! ]dx  A. 11!



125

min ti, t2!
E[r t !r t>!] = f v x!E[z t,x,8! z t E.x,6!]dx

E [>  t1!>  t2! j � >[+  t]!! [   2! ]2 2 2 2

g»~ t,. t2! 2 2v x!E[z  t1,x,e! z  t2,x,8!]dx

min t,t2!+ 2 f v x!E[z tt,x,8! z tE.x,0!]dx!



APPENDlX B

SOME STATISTICAL PROPERTIES OF g  e,  I!!

.,'he moments of g e,!! can be expressed in terms of the density of

the angular location variables, ft'8, t!!,

2T[ m/2

E[g  8,8!] = f f g  8,8! f 8,8!dgdd  B. 1!
0 0

where the spherical coordinate system defining the angles is shown in

Figure 4.1. Some typical density functions for 8 and  I! are given in

Section 4.1.3. In particular, when the scattering density is constant,

the moment expression is

vr/2 2T[

E[g" 8,8!] = � f sing f g  8,8!ddd8  B. 2!
0 0

One common type of transducer is the circular piston which has the

following directivity function

2J   � sin8!
md

1
g e, y!�

� sinB

 B. 3!

where

The magnitude of the signal reflected by a scatterer at angular

location 6 and  t! is dependent on the transducer directivity function

g e,�!! . Since the position of the scatterers is random, the directivity

function term, g e, I!!, is also random. In this appendix, some of the

statistical properties of gt'9, t!! are investigated.
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A = acoustic wavelength

d = diameter of the piston

J  x! = first order Bessel function
1

A plot of E[g  9,$!] and Ejg  8,$!] as a function of d/X for a piston4 8

transducer and a uniform spatial scattering density is shown in Figure Bl.

The density function of the beam pattern random variable G = g  8,4

$! is used in Examples �.1! and �.2! and the target strength density

function estimation technique described in Section 5.4. The density

function is obtained from the joint density for 8 and $ and the general

expression for a function of two random variables  cf. [33] pp. 199-205! .

 B. 4!

where  xl, 81!, ~ ,  u.,8 .! = solutions to equations g = g  9, $!4
3 3

The beam pattern density function, fG g!, for a piston transducer and a
uniform spatial scattering density is shown in Figure B2.
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102

'JO

cf/ X

Figure 81, Moments of g e,g!for piston transducer and uniform spatial

scattering distribution
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.001 .01

g=g <eA!

Figure B2. Beam pattern density function for piston transducer and

uniform spatial scattering distribution



APPENDIX C

MOMENTS OF ~r u! ~

l.et <r a!, x ! ti! be a zero mean filtered Poisson process defined

by

N a!

r n! = g z u,r.,8.!
i=l

 C. 1!

z u,t,9! = Re[z m,v,8!e c ]

where

z o,,v,8! = z  e,r,8!-jz  a,v,8!

The squared envelope of r t! can be expressed in terms of its two law-

pass quadrature components, r  u! and r  u!,c s

lr ~!I = r,  >!+r  ~!2= 2 2  C. 3!

It can easily be shown using the structure of a quadrature demodulator

that

N cr!

r  o,! = g z  a,v.,8!
i=1

N  m!
r  m! = g z  u,v.,8.!

i=1

 C. 4!

where z' m,T.,8.! is a narrow-band signal for all choices of the param-
1.

eter vector, 8. The signal z o.', 7, 8! can be written in complex envelope

notation as
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2The mean and covariance of ~r�]! t are

 C. 5!

Covl'Ir 'x! I lr 8! I ] = Cov[r   x!,r  9!]
2 2 2 2

+ Cov[r  a!,r  g!]+ Cov[r   x!,r  8!]
2 2 2 2

+ Covlr  [z!,r �!]
2 2

 C. 6!

It can be shown that the joint characteristic function of r  c[!,r  g!,
c c

r  c[! and r  8! is
s s

r  c[! r  c]!,r  8! r �!
c s c 5

 x juizc a,x,O!+... +ju4zs �,x,a!
exp f u x!E[e -1]dx

l 'I

ju3 zc �, x,a!+ j u4zs  g,x,9!
+f u x!E[e -1]dx  C. 7!

where it has been assumed that c[� and that the process originated at

time t . The derivation of  C.7! is almost identical ta the proof of

Theorem �.7! . The moments of r  a! and r   z! are obtained using  C.7!
c s

and the r]]oment relationships in Appendix A.

E[r  d!] = f p x!x  tx,x,O!dx
tl

 C. 8!
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min a,g!

Covtr  a!,r  8!] = J u x! z  a,x,e!2. 2 r 2

tl

 C.9!

expressions for the quadrature components, it follows that

a

E[[x a! ] = f v x! [z u,x,B! [ dx
tl

 C. 10!

and

<I:Ir a! I lr 8! I ] - E[lr a! I ]E[lr O! I ]

rain  a, g!

f v x!E[ z a,x,B[ [ z B,x.B ]dx2- 2

min  a, g!

+ 2 f v x!E[i  u,x,0!z  E,x,B!]dx
tl

min  a, l3!

+ 2 f u x!E[z  u,x,B!z  E,x,B!]dx
tl

min a, 5!

+ 2 f u x!E[i  u,x,B!z  E,x,B!]dx

min a, g!

+ 2 f v x!E [z  u,x,B!i  E,x,B!]dx
tl

 C. 11!

The expressions for EIr  a!] and CovIr  a!,r  8!], Cov[r  a!,r  g!]
2 2 2 2 2

s c s s c

2 2and Cov[r  a!,r  9!] are found in an analogous way. Using the moment
s s
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where

  z tx,x,9 = z  cx,x,8! + z   x,x,8!2 -2 -2



APPENDIX D

EXPRESSION FOR A..  t!
3. j

Assume that the transducer has a beam pattern with an elliptical

cross section and a uniform intensity across the beam. The cross sec-

. th .thtions for the i and j acoustic pulses at a distance ct/2 from the

transducer are shown in Figure Dl.

MOTfON

Figure Dl. Beam pattern cross sections

If the speed of the transducer is vT and the time between pulses

is T , then the distance between the centers of the beam patterns for
s

the i and j pulses, d , is, th .th
ij'

d..=vT I
13 Ts

 D. l!

The equation for the ellipse shown in Figure Dl is
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or

2
X ct . B

6

y = 1 � san
2 2

Sin 2

Evaluating the integral, it follows that,

ct sin  8A/2!
2 8 8

A..  t! = � sin � sin � sin 1 ct! . A . B . -1
ij 2 2 2

ct sin �A/2!

6

- � sin � ~ i-jlv Tct . B

2 2 T s

Ii-jlvTT ~ ct sin  8A/2!

= 0 for Ii-j ~v T >ct sin � /2!
T s A

An integral expresson for A.. t! is
ij

4sin�B/2!
A.. t! =

ij sin� /2!

d..
~1

2


